China Custom on-Grid Solar Horizontal Single Axis with Linkage Motor Drive Tracker System for Solar Power Plant with high quality

Product Description

Product Description

                   Single Axis Solar Panel Independent Tracking System with Linkage Motor Drive

Single Axis Panel Independent Tracking System with Linkage Motor Drive uses rotary linkage motor drive, double row connected at the same time drive, higher strength, stronger stability. It can track the sunlight in real time and search for light intelligently. Comparing with thetraditional fixed bracket, the power generation can be increased by 10-15%. This system is suitable for multi scene large power station. 

Features

1, The traditional square tube girder design has better adaptability. 
2, Adopting fishbone purlin, which is better strength, better stability and easy installation.
3,  Max. gradient difference adaptability in N-S direction up to 15%.
4,  Excellent compatibility with all the mainstream solar modules available in the industry: frame, frameless and bi-facial. Independent 2V module design, which reduces the quantity of piles and the construction cost significantly.
5,  Free obstacles among trackers in N-S direction, easy to maintain and clean.
6,  Its design is configured with 1 single set of controller,  which ensures point-to-point real-time monitoring, easy to detect fault points in time every day and reduce output loss.
7,  Reducing the cost and energy consumption comparing with single axis with independent tracking system.
8,  Independent design, various land form adaptability. 

 

Product Advantages
Middle rotary drive, 2 measuring belts damping, enhance damping, reduce resonance. 
Rotary drive system, tracking angle can be reached ±60°
The linkage shaft can be adjusted in all directions, and is not affected by high and low staggering.
Single motor drive, greatly reduce the cost. 

 

System Advantages 
String power, backup battery, safe and reliable
Wireless communication, optimized layout, simple and efficient
Intelligent tracking all day to improve power generation
Internet cloud data transmission, 5G transmission, real-time monitoring, fast and efficient.

 

Product Parameters

Electrical system parameters
Control mode  MCU
Tracking accuracy
Protection level IP65
Ambient temperature -40ºC-85ºC
Power supply type AC110-500/DC 300-1500
Monitoring device Remote monitoring(optional)
Communication mode Wireless / wired communication

 

System basic parameters
Driving form Rotary device 
Foundation type Cement foundation / Steel pile foundation
Component type Single glass panel / double glass panel / frameless panel
Tracking range  ± 50 °
Panel layout Single row vertical/ double row vertical
Minimum height above ground 0.3m(lowest point)
System life  More than 30 years
Work speed ≤18m/s
Resistance to wind speed  ≤50m/s

 

Detailed Photos

Project

 

Company Profile

ZHangZhoug ChuHangZhou New Energy Co., Ltd, was established in 1999, headquartered in HangZhou city, half an hour from ZheJiang city by speed train. With 22 years of production experience, the quality has been certified by TUV, SGS, ISO 9001 etc. As a leader in the global photovoltaic system industry, the company focuses on the research and development, design, production, engineering installation services and system solutions of support structure products, with application in photovoltaic and construction.      

Chuanda‘s main business includes aluminum frame, PV mounting and tracking system, distributed power station development, pipe corridor brackets etc. It is 1 the largest professional manufacturer of PV mounting and tracking system in China and the Asia-Pacific region. ChuHangZhou is committed to providing professional, efficient, and reliable photovoltaic system solutions to global customers. As of 2571, the cumulative global installation of photovoltaic mounting and tracking system has exceeded 15 GW, the cumulative turnover of all the business exceeds 1 billion in RMB.
 

Workshop

Certifications

Cooperation Partners

FAQ

Q: Are you a manufacturer or a Trading company?

A: We are a leader manufacturer of solar PV mounting systems and related accessories since 1999, with rich practical experience and mature production technology, and has several production lines, and our products have won the favor of customers from all over the world.

 

Q: What can you get from us?

A: -Professional analysis on the project, supply professional design and drawings from the engineers team
-Big annual capacity of 5GW will guarantee the fast delivery for all the clients
-24H services before selling and after selling from our engineers team and sales team
-High quality control system to guarantee the high quality for every order
-Competitive price from good management on supplier-chain system and high automated equipment
-New products launching every year
-New information from market and industry updating every month
-5 years’ warranty

 

Q: How to guarantee the quality?

A: – A counter sample will be confirmed and sealed by both sides before bulk production.
-The professional prodution technical instruction is available for all the bulk procedure.
-3 QC steps for every order, including incoming material inspetion, on-site inspection and final inspection.
– Professional testing will be done according to the detailed standard.
 

Q: Why we are better?

A: – Big production capacity, 2 production base in China.
– Rich production experience, we have 22 years in this industry.
– More than 30 professional engineers for quality control and R&D.
– Competitive price, 5-10% better than the market price, as we have a good raw material supplier chain and quality control system.

 

Worm Shafts and Gearboxes

If you have a gearbox, you may be wondering what the best Worm Shaft is for your application. There are several things to consider, including the Concave shape, Number of threads, and Lubrication. This article will explain each factor and help you choose the right Worm Shaft for your gearbox. There are many options available on the market, so don’t hesitate to shop around. If you are new to the world of gearboxes, read on to learn more about this popular type of gearbox.
worm shaft

Concave shape

The geometry of a worm gear varies considerably depending on its manufacturer and its intended use. Early worms had a basic profile that resembled a screw thread and could be chased on a lathe. Later, tools with a straight sided g-angle were developed to produce threads that were parallel to the worm’s axis. Grinding was also developed to improve the finish of worm threads and minimize distortions that occur with hardening.
To select a worm with the proper geometry, the diameter of the worm gear must be in the same unit as the worm’s shaft. Once the basic profile of the worm gear is determined, the worm gear teeth can be specified. The calculation also involves an angle for the worm shaft to prevent it from overheating. The angle of the worm shaft should be as close to the vertical axis as possible.
Double-enveloping worm gears, on the other hand, do not have a throat around the worm. They are helical gears with a straight worm shaft. Since the teeth of the worm are in contact with each other, they produce significant friction. Unlike double-enveloping worm gears, non-throated worm gears are more compact and can handle smaller loads. They are also easy to manufacture.
The worm gears of different manufacturers offer many advantages. For instance, worm gears are 1 of the most efficient ways to increase torque, while lower-quality materials like bronze are difficult to lubricate. Worm gears also have a low failure rate because they allow for considerable leeway in the design process. Despite the differences between the 2 standards, the overall performance of a worm gear system is the same.
The cone-shaped worm is another type. This is a technological scheme that combines a straight worm shaft with a concave arc. The concave arc is also a useful utility model. Worms with this shape have more than 3 contacts at the same time, which means they can reduce a large diameter without excessive wear. It is also a relatively low-cost model.
worm shaft

Thread pattern

A good worm gear requires a perfect thread pattern. There are a few key parameters that determine how good a thread pattern is. Firstly, the threading pattern must be ACME-threaded. If this is not possible, the thread must be made with straight sides. Then, the linear pitch of the “worm” must be the same as the circular pitch of the corresponding worm wheel. In simple terms, this means the pitch of the “worm” is the same as the circular pitch of the worm wheel. A quick-change gearbox is usually used with this type of worm gear. Alternatively, lead-screw change gears are used instead of a quick-change gear box. The pitch of a worm gear equals the helix angle of a screw.
A worm gear’s axial pitch must match the circular pitch of a gear with a higher axial pitch. The circular pitch is the distance between the points of teeth on the worm, while the axial pitch is the distance between the worm’s teeth. Another factor is the worm’s lead angle. The angle between the pitch cylinder and worm shaft is called its lead angle, and the higher the lead angle, the greater the efficiency of a gear.
Worm gear tooth geometry varies depending on the manufacturer and intended use. In early worms, threading resembled the thread on a screw, and was easily chased using a lathe. Later, grinding improved worm thread finishes and minimized distortions from hardening. As a result, today, most worm gears have a thread pattern corresponding to their size. When selecting a worm gear, make sure to check for the number of threads before purchasing it.
A worm gear’s threading is crucial in its operation. Worm teeth are typically cylindrical, and are arranged in a pattern similar to screw or nut threads. Worm teeth are often formed on an axis of perpendicular compared to their parallel counterparts. Because of this, they have greater torque than their spur gear counterparts. Moreover, the gearing has a low output speed and high torque.

Number of threads

Different types of worm gears use different numbers of threads on their planetary gears. A single threaded worm gear should not be used with a double-threaded worm. A single-threaded worm gear should be used with a single-threaded worm. Single-threaded worms are more effective for speed reduction than double-threaded ones.
The number of threads on a worm’s shaft is a ratio that compares the pitch diameter and number of teeth. In general, worms have 1,2,4 threads, but some have three, five, or six. Counting thread starts can help you determine the number of threads on a worm. A single-threaded worm has fewer threads than a multiple-threaded worm, but a multi-threaded worm will have more threads than a mono-threaded planetary gear.
To measure the number of threads on a worm shaft, a small fixture with 2 ground faces is used. The worm must be removed from its housing so that the finished thread area can be inspected. After identifying the number of threads, simple measurements of the worm’s outside diameter and thread depth are taken. Once the worm has been accounted for, a cast of the tooth space is made using epoxy material. The casting is moulded between the 2 tooth flanks. The V-block fixture rests against the outside diameter of the worm.
The circular pitch of a worm and its axial pitch must match the circular pitch of a larger gear. The axial pitch of a worm is the distance between the points of the teeth on a worm’s pitch diameter. The lead of a thread is the distance a thread travels in 1 revolution. The lead angle is the tangent to the helix of a thread on a cylinder.
The worm gear’s speed transmission ratio is based on the number of threads. A worm gear with a high ratio can be easily reduced in 1 step by using a set of worm gears. However, a multi-thread worm will have more than 2 threads. The worm gear is also more efficient than single-threaded gears. And a worm gear with a high ratio will allow the motor to be used in a variety of applications.
worm shaft

Lubrication

The lubrication of a worm gear is particularly challenging, due to its friction and high sliding contact force. Fortunately, there are several options for lubricants, such as compounded oils. Compounded oils are mineral-based lubricants formulated with 10 percent or more fatty acid, rust and oxidation inhibitors, and other additives. This combination results in improved lubricity, reduced friction, and lower sliding wear.
When choosing a lubricant for a worm shaft, make sure the product’s viscosity is right for the type of gearing used. A low viscosity will make the gearbox difficult to actuate and rotate. Worm gears also undergo a greater sliding motion than rolling motion, so grease must be able to migrate evenly throughout the gearbox. Repeated sliding motions will push the grease away from the contact zone.
Another consideration is the backlash of the gears. Worm gears have high gear ratios, sometimes 300:1. This is important for power applications, but is at the same time inefficient. Worm gears can generate heat during the sliding motion, so a high-quality lubricant is essential. This type of lubricant will reduce heat and ensure optimal performance. The following tips will help you choose the right lubricant for your worm gear.
In low-speed applications, a grease lubricant may be sufficient. In higher-speed applications, it’s best to apply a synthetic lubricant to prevent premature failure and tooth wear. In both cases, lubricant choice depends on the tangential and rotational speed. It is important to follow manufacturer’s guidelines regarding the choice of lubricant. But remember that lubricant choice is not an easy task.

China Custom on-Grid Solar Horizontal Single Axis with Linkage Motor Drive Tracker System for Solar Power Plant   with high qualityChina Custom on-Grid Solar Horizontal Single Axis with Linkage Motor Drive Tracker System for Solar Power Plant   with high quality