Tag Archives: automatic making machine

China factory Fully Automatic Multi-Function Laminated Film Pet BOPET OPP BOPP 2-Side / 3-Side / 4-Side Seal Pouch Bag Making Machine with Servo-Drive System for Cloth Snack with Hot selling

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

Calculating the Deflection of a Worm Shaft

In this article, we’ll discuss how to calculate the deflection of a worm gear’s worm shaft. We’ll also discuss the characteristics of a worm gear, including its tooth forces. And we’ll cover the important characteristics of a worm gear. Read on to learn more! Here are some things to consider before purchasing a worm gear. We hope you enjoy learning! After reading this article, you’ll be well-equipped to choose a worm gear to match your needs.
worm shaft

Calculation of worm shaft deflection

The main goal of the calculations is to determine the deflection of a worm. Worms are used to turn gears and mechanical devices. This type of transmission uses a worm. The worm diameter and the number of teeth are inputted into the calculation gradually. Then, a table with proper solutions is shown on the screen. After completing the table, you can then move on to the main calculation. You can change the strength parameters as well.
The maximum worm shaft deflection is calculated using the finite element method (FEM). The model has many parameters, including the size of the elements and boundary conditions. The results from these simulations are compared to the corresponding analytical values to calculate the maximum deflection. The result is a table that displays the maximum worm shaft deflection. The tables can be downloaded below. You can also find more information about the different deflection formulas and their applications.
The calculation method used by DIN EN 10084 is based on the hardened cemented worm of 16MnCr5. Then, you can use DIN EN 10084 (CuSn12Ni2-C-GZ) and DIN EN 1982 (CuAl10Fe5Ne5-C-GZ). Then, you can enter the worm face width, either manually or using the auto-suggest option.
Common methods for the calculation of worm shaft deflection provide a good approximation of deflection but do not account for geometric modifications on the worm. While Norgauer’s 2021 approach addresses these issues, it fails to account for the helical winding of the worm teeth and overestimates the stiffening effect of gearing. More sophisticated approaches are required for the efficient design of thin worm shafts.
Worm gears have a low noise and vibration compared to other types of mechanical devices. However, worm gears are often limited by the amount of wear that occurs on the softer worm wheel. Worm shaft deflection is a significant influencing factor for noise and wear. The calculation method for worm gear deflection is available in ISO/TR 14521, DIN 3996, and AGMA 6022.
The worm gear can be designed with a precise transmission ratio. The calculation involves dividing the transmission ratio between more stages in a gearbox. Power transmission input parameters affect the gearing properties, as well as the material of the worm/gear. To achieve a better efficiency, the worm/gear material should match the conditions that are to be experienced. The worm gear can be a self-locking transmission.
The worm gearbox contains several machine elements. The main contributors to the total power loss are the axial loads and bearing losses on the worm shaft. Hence, different bearing configurations are studied. One type includes locating/non-locating bearing arrangements. The other is tapered roller bearings. The worm gear drives are considered when locating versus non-locating bearings. The analysis of worm gear drives is also an investigation of the X-arrangement and four-point contact bearings.
worm shaft

Influence of tooth forces on bending stiffness of a worm gear

The bending stiffness of a worm gear is dependent on tooth forces. Tooth forces increase as the power density increases, but this also leads to increased worm shaft deflection. The resulting deflection can affect efficiency, wear load capacity, and NVH behavior. Continuous improvements in bronze materials, lubricants, and manufacturing quality have enabled worm gear manufacturers to produce increasingly high power densities.
Standardized calculation methods take into account the supporting effect of the toothing on the worm shaft. However, overhung worm gears are not included in the calculation. In addition, the toothing area is not taken into account unless the shaft is designed next to the worm gear. Similarly, the root diameter is treated as the equivalent bending diameter, but this ignores the supporting effect of the worm toothing.
A generalized formula is provided to estimate the STE contribution to vibratory excitation. The results are applicable to any gear with a meshing pattern. It is recommended that engineers test different meshing methods to obtain more accurate results. One way to test tooth-meshing surfaces is to use a finite element stress and mesh subprogram. This software will measure tooth-bending stresses under dynamic loads.
The effect of tooth-brushing and lubricant on bending stiffness can be achieved by increasing the pressure angle of the worm pair. This can reduce tooth bending stresses in the worm gear. A further method is to add a load-loaded tooth-contact analysis (CCTA). This is also used to analyze mismatched ZC1 worm drive. The results obtained with the technique have been widely applied to various types of gearing.
In this study, we found that the ring gear’s bending stiffness is highly influenced by the teeth. The chamfered root of the ring gear is larger than the slot width. Thus, the ring gear’s bending stiffness varies with its tooth width, which increases with the ring wall thickness. Furthermore, a variation in the ring wall thickness of the worm gear causes a greater deviation from the design specification.
To understand the impact of the teeth on the bending stiffness of a worm gear, it is important to know the root shape. Involute teeth are susceptible to bending stress and can break under extreme conditions. A tooth-breakage analysis can control this by determining the root shape and the bending stiffness. The optimization of the root shape directly on the final gear minimizes the bending stress in the involute teeth.
The influence of tooth forces on the bending stiffness of a worm gear was investigated using the CZPT Spiral Bevel Gear Test Facility. In this study, multiple teeth of a spiral bevel pinion were instrumented with strain gages and tested at speeds ranging from static to 14400 RPM. The tests were performed with power levels as high as 540 kW. The results obtained were compared with the analysis of a three-dimensional finite element model.
worm shaft

Characteristics of worm gears

Worm gears are unique types of gears. They feature a variety of characteristics and applications. This article will examine the characteristics and benefits of worm gears. Then, we’ll examine the common applications of worm gears. Let’s take a look! Before we dive in to worm gears, let’s review their capabilities. Hopefully, you’ll see how versatile these gears are.
A worm gear can achieve massive reduction ratios with little effort. By adding circumference to the wheel, the worm can greatly increase its torque and decrease its speed. Conventional gearsets require multiple reductions to achieve the same reduction ratio. Worm gears have fewer moving parts, so there are fewer places for failure. However, they can’t reverse the direction of power. This is because the friction between the worm and wheel makes it impossible to move the worm backwards.
Worm gears are widely used in elevators, hoists, and lifts. They are particularly useful in applications where stopping speed is critical. They can be incorporated with smaller brakes to ensure safety, but shouldn’t be relied upon as a primary braking system. Generally, they are self-locking, so they are a good choice for many applications. They also have many benefits, including increased efficiency and safety.
Worm gears are designed to achieve a specific reduction ratio. They are typically arranged between the input and output shafts of a motor and a load. The 2 shafts are often positioned at an angle that ensures proper alignment. Worm gear gears have a center spacing of a frame size. The center spacing of the gear and worm shaft determines the axial pitch. For instance, if the gearsets are set at a radial distance, a smaller outer diameter is necessary.
Worm gears’ sliding contact reduces efficiency. But it also ensures quiet operation. The sliding action limits the efficiency of worm gears to 30% to 50%. A few techniques are introduced herein to minimize friction and to produce good entrance and exit gaps. You’ll soon see why they’re such a versatile choice for your needs! So, if you’re considering purchasing a worm gear, make sure you read this article to learn more about its characteristics!
An embodiment of a worm gear is described in FIGS. 19 and 20. An alternate embodiment of the system uses a single motor and a single worm 153. The worm 153 turns a gear which drives an arm 152. The arm 152, in turn, moves the lens/mirr assembly 10 by varying the elevation angle. The motor control unit 114 then tracks the elevation angle of the lens/mirr assembly 10 in relation to the reference position.
The worm wheel and worm are both made of metal. However, the brass worm and wheel are made of brass, which is a yellow metal. Their lubricant selections are more flexible, but they’re limited by additive restrictions due to their yellow metal. Plastic on metal worm gears are generally found in light load applications. The lubricant used depends on the type of plastic, as many types of plastics react to hydrocarbons found in regular lubricant. For this reason, you need a non-reactive lubricant.

China factory Fully Automatic Multi-Function Laminated Film Pet BOPET OPP BOPP 2-Side / 3-Side / 4-Side Seal Pouch Bag Making Machine with Servo-Drive System for Cloth Snack   with Hot sellingChina factory Fully Automatic Multi-Function Laminated Film Pet BOPET OPP BOPP 2-Side / 3-Side / 4-Side Seal Pouch Bag Making Machine with Servo-Drive System for Cloth Snack   with Hot selling

China OEM Fully Automatic Multi-Function Laminated Film Aluminium Plastic K Seal / Skirt Seal Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt with high quality

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are 3 main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join 2 heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new 1 or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China OEM Fully Automatic Multi-Function Laminated Film Aluminium Plastic K Seal / Skirt Seal Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt   with high qualityChina OEM Fully Automatic Multi-Function Laminated Film Aluminium Plastic K Seal / Skirt Seal Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt   with high quality

China supplier Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine near me manufacturer

Product Description

Horizontal Automatic Energy Saving Servo Drive PET Plastic Preform Making Injection Blow Moulding Machine

Our automatic plastic perform injection molding machine adopts a thermal flow system and high-pressure injection molding to get high precision of bottle mouth, bottleneck and screw. It can inject all kinds of plastic parts such as bottle preform, engineering plastic, UPVC, PVC, PE pipes fitting, pomponents for automotive, household, eletronics,  telecommunication, etc.

Advantages of Our Plastic Preform Injection Molding Machine

1. Even the mainframe has no height limit for the workshop to be placed due to its low fuselage.

2. The product can be automatically dropped occasions, do not need to use a manipulator can also achieve automatic molding.

3. Because of the low fuselage, it is convenient for feeding and maintenance.

4. The mold shall be installed by crane.

5. The molding products are easy to be collected and packed by the conveyor belt when multiple sets are arranged in parallel.
Details of Our Plastic Preform Injection Molding Machine

Technical Parameters

Item PM-1300A PM-1600A PM-2000A
screw diameter (mm) 35 40 45 45 50 55 50 55 60
screw l/d ratio (l/d) 24 21 18.7 23.3 21 19.1 23.1 21 19
theoretical shot volume (mm³) 173 226 286 358 442 534 491 594 707
shot weight (ps) (g) 158 206 260 326 402 486 447 540 643
injection pressure (mpa) 235 142 142 219 178 147 215 178 149
theoretical injection rate (ps) (g/s) 110 181 181 142 175 212 145 175 208
plasticising capacity (g/s) 13.8 19.7 27.1 20.1 26.5 34.2 22.5 28.7 35.4
max screw rotate speed (r/min) 250 200 170
injection stroke (mm) 180 225 250
Max.Clamping force(kn) 1300 1600 2000
Max.Opening stroke (mm) 400 460 500
space between (mm) 420*420 480*480 505*505
mould height (mm) 160-440 180-500 190-530
Max.Daylight (mm) 840 960 1030
pump motor power (kw) 13 15 18.5
heating power (kw) 9.2 13.6 16.6
heating zone 4 4 4
net weight 4.3 5.6 6.4
oil tank capacity (t) 360 420 420
intenational designation (l) 1300-410 1600-785 2000-1060

Our Service
Customized service
We can design the machines according your requirements(material,power,filling type,the kinds of the bottles,and so on),at the same time we will give you our professional suggestion,as you know,we have been in this industry for many years.

After-sales service
1.We will delivery the machine and provide the bill of load on time to make sure you can get the machine quickly 
2.When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well. 
3.We often ask feedback and offer help to our customer whose machine have been used in their factory for some time.
4.We provide 1 year warranty 
5.Well-trained & experienced staff are to answer all your inquiries in English and Chinese
6.24 hours for engineer response (all services part 5days in customer hand by Intl’ courier). 
7.12 Months guarantee and life-long technical support.
8.Your business relationship with us will be confidential to any third party. 
9.Good after-sale service offered, please get back to us if you got any questions.

Quality Control
We have separate quality control department, which make sure the raw materials are qualified,also ensure the machine running smoothly. 
If you want to know more information about the product,Send inquiry to us, we will solve any of your problems and send you running video for reference.

Packaging & Shipping

Company Information
HangZhou Proman Machine Co., Ltd. is a production manufacturer and exporter in China, specialized in water treatment plants,beverage filling machine, packing machine, bottle blowing machine, injection moulding machine and spare parts of filling line.

Our factory was established in the year of 1998, with the long history of accumulated experience in filling machine industry in south ZheJiang . There are many development engineers of filling machine in our company. We devote ourselves to the development, research and production of liquid food and beverage packing and filling industry.

Besides, we have our own designs for the bottles.

Proman Machine cooperated with many customers in recent years, we win the trust of customers from our high-quality products. And we are looking forward to the future cooperation with you if our products can impress you deeply!

FAQ

1. Where is your factory? 
Our Factory is located in HangZhou City, 2 hours drive from ZheJiang and 1 hour drive from HangZhou(airplane & high-speed rail). If you arrive at ZheJiang or HangZhou, we can pick you up to visit our factory.

2. Do you have any technical supports with your Plastic Preform Injection Molding Machines? 
Yes, We have a professional team of engineers who owned many installation, debug and training experiences abroad, are available to service machinery overseas. 

3. What’s your guarantee or the warranty of the quality if we buy your machines? 
We offer high quality machines with 1 year warranty and supply life-long technical support. 
You’re always welcome to visit our company. If you have any interest on our products. Please do not hesitate to contact us.

An Overview of Worm Shafts and Gears

This article provides an overview of worm shafts and gears, including the type of toothing and deflection they experience. Other topics covered include the use of aluminum versus bronze worm shafts, calculating worm shaft deflection and lubrication. A thorough understanding of these issues will help you to design better gearboxes and other worm gear mechanisms. For further information, please visit the related websites. We also hope that you will find this article informative.
worm shaft

Double throat worm gears

The pitch diameter of a worm and the pitch of its worm wheel must be equal. The 2 types of worm gears have the same pitch diameter, but the difference lies in their axial and circular pitches. The pitch diameter is the distance between the worm’s teeth along its axis and the pitch diameter of the larger gear. Worms are made with left-handed or right-handed threads. The lead of the worm is the distance a point on the thread travels during 1 revolution of the worm gear. The backlash measurement should be made in a few different places on the gear wheel, as a large amount of backlash implies tooth spacing.
A double-throat worm gear is designed for high-load applications. It provides the tightest connection between worm and gear. It is crucial to mount a worm gear assembly correctly. The keyway design requires several points of contact, which block shaft rotation and help transfer torque to the gear. After determining the location of the keyway, a hole is drilled into the hub, which is then screwed into the gear.
The dual-threaded design of worm gears allows them to withstand heavy loads without slipping or tearing out of the worm. A double-throat worm gear provides the tightest connection between worm and gear, and is therefore ideal for hoisting applications. The self-locking nature of the worm gear is another advantage. If the worm gears are designed well, they are excellent for reducing speeds, as they are self-locking.
When choosing a worm, the number of threads that a worm has is critical. Thread starts determine the reduction ratio of a pair, so the higher the threads, the greater the ratio. The same is true for the worm helix angles, which can be one, two, or 3 threads long. This varies between a single thread and a double-throat worm gear, and it is crucial to consider the helix angle when selecting a worm.
Double-throat worm gears differ in their profile from the actual gear. Double-throat worm gears are especially useful in applications where noise is an issue. In addition to their low noise, worm gears can absorb shock loads. A double-throat worm gear is also a popular choice for many different types of applications. These gears are also commonly used for hoisting equipment. Its tooth profile is different from that of the actual gear.
worm shaft

Bronze or aluminum worm shafts

When selecting a worm, a few things should be kept in mind. The material of the shaft should be either bronze or aluminum. The worm itself is the primary component, but there are also addendum gears that are available. The total number of teeth on both the worm and the addendum gear should be greater than 40. The axial pitch of the worm needs to match the circular pitch of the larger gear.
The most common material used for worm gears is bronze because of its desirable mechanical properties. Bronze is a broad term referring to various copper alloys, including copper-nickel and copper-aluminum. Bronze is most commonly created by alloying copper with tin and aluminum. In some cases, this combination creates brass, which is a similar metal to bronze. The latter is less expensive and suitable for light loads.
There are many benefits to bronze worm gears. They are strong and durable, and they offer excellent wear-resistance. In contrast to steel worms, bronze worm gears are quieter than their counterparts. They also require no lubrication and are corrosion-resistant. Bronze worms are popular with small, light-weight machines, as they are easy to maintain. You can read more about worm gears in CZPT’s CZPT.
Although bronze or aluminum worm shafts are the most common, both materials are equally suitable for a variety of applications. A bronze shaft is often called bronze but may actually be brass. Historically, worm gears were made of SAE 65 gear bronze. However, newer materials have been introduced. SAE 65 gear bronze (UNS C90700) remains the preferred material. For high-volume applications, the material savings can be considerable.
Both types of worms are essentially the same in size and shape, but the lead on the left and right tooth surfaces can vary. This allows for precise adjustment of the backlash on a worm without changing the center distance between the worm gear. The different sizes of worms also make them easier to manufacture and maintain. But if you want an especially small worm for an industrial application, you should consider bronze or aluminum.

Calculation of worm shaft deflection

The centre-line distance of a worm gear and the number of worm teeth play a crucial role in the deflection of the rotor. These parameters should be entered into the tool in the same units as the main calculation. The selected variant is then transferred to the main calculation. The deflection of the worm gear can be calculated from the angle at which the worm teeth shrink. The following calculation is helpful for designing a worm gear.
Worm gears are widely used in industrial applications due to their high transmittable torques and large gear ratios. Their hard/soft material combination makes them ideally suited for a wide range of applications. The worm shaft is typically made of case-hardened steel, and the worm wheel is fabricated from a copper-tin-bronze alloy. In most cases, the wheel is the area of contact with the gear. Worm gears also have a low deflection, as high shaft deflection can affect the transmission accuracy and increase wear.
Another method for determining worm shaft deflection is to use the tooth-dependent bending stiffness of a worm gear’s toothing. By calculating the stiffness of the individual sections of a worm shaft, the stiffness of the entire worm can be determined. The approximate tooth area is shown in figure 5.
Another way to calculate worm shaft deflection is by using the FEM method. The simulation tool uses an analytical model of the worm gear shaft to determine the deflection of the worm. It is based on a two-dimensional model, which is more suitable for simulation. Then, you need to input the worm gear’s pitch angle and the toothing to calculate the maximum deflection.
worm shaft

Lubrication of worm shafts

In order to protect the gears, worm drives require lubricants that offer excellent anti-wear protection, high oxidation resistance, and low friction. While mineral oil lubricants are widely used, synthetic base oils have better performance characteristics and lower operating temperatures. The Arrhenius Rate Rule states that chemical reactions double every 10 degrees C. Synthetic lubricants are the best choice for these applications.
Synthetics and compounded mineral oils are the most popular lubricants for worm gears. These oils are formulated with mineral basestock and 4 to 6 percent synthetic fatty acid. Surface-active additives give compounded gear oils outstanding lubricity and prevent sliding wear. These oils are suited for high-speed applications, including worm gears. However, synthetic oil has the disadvantage of being incompatible with polycarbonate and some paints.
Synthetic lubricants are expensive, but they can increase worm gear efficiency and operating life. Synthetic lubricants typically fall into 2 categories: PAO synthetic oils and EP synthetic oils. The latter has a higher viscosity index and can be used at a range of temperatures. Synthetic lubricants often contain anti-wear additives and EP (anti-wear).
Worm gears are frequently mounted over or under the gearbox. The proper lubrication is essential to ensure the correct mounting and operation. Oftentimes, inadequate lubrication can cause the unit to fail sooner than expected. Because of this, a technician may not make a connection between the lack of lube and the failure of the unit. It is important to follow the manufacturer’s recommendations and use high-quality lubricant for your gearbox.
Worm drives reduce backlash by minimizing the play between gear teeth. Backlash can cause damage if unbalanced forces are introduced. Worm drives are lightweight and durable because they have minimal moving parts. In addition, worm drives are low-noise and vibration. In addition, their sliding motion scrapes away excess lubricant. The constant sliding action generates a high amount of heat, which is why superior lubrication is critical.
Oils with a high film strength and excellent adhesion are ideal for lubrication of worm gears. Some of these oils contain sulfur, which can etch a bronze gear. In order to avoid this, it is imperative to use a lubricant that has high film strength and prevents asperities from welding. The ideal lubricant for worm gears is 1 that provides excellent film strength and does not contain sulfur.

China supplier Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   near me manufacturer China supplier Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   near me manufacturer

China factory Full Automatic Auto Plastic Pet HDPE Preform Inject Filling Water Oil Food Can Jar Container Make Making Blow Bottle Blowing CZPT Moulding Mold Molding Machine near me shop

Product Description

                                                               Fully Automatic Bottle Blowing Machine

Machine Features:
1. Full automatic blow molding machine is suitable for producing PET plastic containers and bottles in all shapes. It is widely used to produce the carbonated bottle, mineral water, pesticide bottle, oil bottle, cosmetic bottle etc. Reasonable design, full automatic control, preform automatially feeded, save power and labor.
2. The mechanical part has compact and energy saving design.
3. Machine has fault alarm function and diagnostic system to allow easy maintenance.
4. The CZPT positioning installation makes it possible for operators to change the CZPT easily within 30 minutes.
5. The machine can be controlled through touch screen and running status is shown on it.
6. Heating by high-quality infrared lamp,high penetration, to make sure each preform be heated uniformly and stably. The width and height of the reflector can be adjusted, which can be suitable for heating preforms with different wall thicknesses.  

Main Parameters:

Item L-A6 L-A4 L-A2
Theoretical Output 6000pcs/h 4000pcs/h 2200pcs/h
Max Container Volume 2L 2L 2L
Max Neck Diameter 45mm 45mm 50mm
Max Container Diameter 100mm 100mm 120mm
Max Container Height 340mm 340mm 340mm
Number of Cavity 6 Cavity 4 Cavity 2 Cavity
Total Power 45Kw 35Kw 25Kw
Real Using Power 30Kw 20Kw 12Kw
Low Pressure Air Consumption 1.6m³/min 1.6m³/min 1.2m³/min
High Pressure Air Consumption 3.6m³/min 2.4m³/min 1.6m³/min
Feeding Machine Dimension 2.0*1.2*2.2m 1.8*1.0*2.0m 1.8*1.0*2.0m
Feeding Machine Weight 300Kg 240Kg 240Kg
Machine Dimension 4.2*1.8*2.0m 3.6*1.8*2.0m 3.2*1.8*2.0m
Machine Weight 3800Kg 2200Kg 1400Kg

Bottle Blowing Process:


Bottle Designs:

We can offer free bottle designs for customers.

Bottle and Preform Moulds:

Company Introduction:
HangZhou CZPT Machinery Co., Ltd is located in Xihu (West Lake) Dis., HangZhou, ZHangZhoug Province, the hometown of CZPT in China. Our company produces high speed automatic blow molding machine, automatic hollow blow molding machine, automatic blow molding machine, semi-automatic blow molding machine and blowing mold.
The blow molding machines are widely used in the production of mineral water bottles, edible oil bottles, food packaging bottles, daily chemical bottles, agricultural medicine bottles, and many other plastic containers in packaging fields. HangZhou CZPT Machinery Co., Ltd can provide a variety of bottle making equipments and suitable technical solutions.
HangZhou CZPT Machinery Co., Ltd has professional design, production team, which provides a solid foundation for producing excellent quality and performance blow molding machines. Our blow molding machines are exported to America, Europe, South korea, the Middle East, Southeast Asia, Central Asia, Africa and other countries and regions, they are well received and used by our customers.
Let’s create a better tomorrow hand in hand!

Machine Shipment:

FAQ:
1.Are you a factory?
We are a factory in HangZhou, which is a eastern costal city near ZheJiang . Welcome to visit HangZhou Lianwo Machinery Co., Ltd!

2.What is your payment term?
30% down payment against order confirmation, 70% balance when the machines are ready. Upon receipt all your payment, we will delivery the goods at once.

3.What is your delivery time?
All the machines will be produced according to the order. Usually in 20 working days, depends on your projects.

4.What about installing in customer factory?
After the machines arrive at your factory, we can arrange engineer to install the machines and train your workers. 

5.What is the guarantee time?
We offer a one-year warranty and a lifetime after-sales service.

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China factory Full Automatic Auto Plastic Pet HDPE Preform Inject Filling Water Oil Food Can Jar Container Make Making Blow Bottle Blowing CZPT Moulding Mold Molding Machine   near me shop China factory Full Automatic Auto Plastic Pet HDPE Preform Inject Filling Water Oil Food Can Jar Container Make Making Blow Bottle Blowing CZPT Moulding Mold Molding Machine   near me shop

China high quality Fully Automatic Laminated Film LDPE HDPE Polythene PA CZPT 2-Side / 3-Side / 4-Side Seal Pouch Bag Making Machine with Servo-Drive System for Coffee Nuts with Free Design Custom

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

How to Replace the Drive Shaft

Several different functions in a vehicle are critical to its functioning, but the driveshaft is probably the part that needs to be understood the most. A damaged or damaged driveshaft can damage many other auto parts. This article will explain how this component works and some of the signs that it may need repair. This article is for the average person who wants to fix their car on their own but may not be familiar with mechanical repairs or even driveshaft mechanics. You can click the link below for more information.
air-compressor

Repair damaged driveshafts

If you own a car, you should know that the driveshaft is an integral part of the vehicle’s driveline. They ensure efficient transmission of power from the engine to the wheels and drive. However, if your driveshaft is damaged or cracked, your vehicle will not function properly. To keep your car safe and running at peak efficiency, you should have it repaired as soon as possible. Here are some simple steps to replace the drive shaft.
First, diagnose the cause of the drive shaft damage. If your car is making unusual noises, the driveshaft may be damaged. This is because worn bushings and bearings support the drive shaft. Therefore, the rotation of the drive shaft is affected. The noise will be squeaks, dings or rattles. Once the problem has been diagnosed, it is time to repair the damaged drive shaft.
Professionals can repair your driveshaft at relatively low cost. Costs vary depending on the type of drive shaft and its condition. Axle repairs can range from $300 to $1,000. Labor is usually only around $200. A simple repair can cost between $150 and $1700. You’ll save hundreds of dollars if you’re able to fix the problem yourself. You may need to spend a few more hours educating yourself about the problem before handing it over to a professional for proper diagnosis and repair.
The cost of repairing a damaged driveshaft varies by model and manufacturer. It can cost as much as $2,000 depending on parts and labor. While labor costs can vary, parts and labor are typically around $70. On average, a damaged driveshaft repair costs between $400 and $600. However, these parts can be more expensive than that. If you don’t want to spend money on unnecessarily expensive repairs, you may need to pay a little more.
air-compressor

Learn how drive shafts work

While a car engine may be 1 of the most complex components in your vehicle, the driveshaft has an equally important job. The driveshaft transmits the power of the engine to the wheels, turning the wheels and making the vehicle move. Driveshaft torque refers to the force associated with rotational motion. Drive shafts must be able to withstand extreme conditions or they may break. Driveshafts are not designed to bend, so understanding how they work is critical to the proper functioning of the vehicle.
The drive shaft includes many components. The CV connector is 1 of them. This is the last stop before the wheels spin. CV joints are also known as “doughnut” joints. The CV joint helps balance the load on the driveshaft, the final stop between the engine and the final drive assembly. Finally, the axle is a single rotating shaft that transmits power from the final drive assembly to the wheels.
Different types of drive shafts have different numbers of joints. They transmit torque from the engine to the wheels and must accommodate differences in length and angle. The drive shaft of a front-wheel drive vehicle usually includes a connecting shaft, an inner constant velocity joint and an outer fixed joint. They also have anti-lock system rings and torsional dampers to help them run smoothly. This guide will help you understand the basics of driveshafts and keep your car in good shape.
The CV joint is the heart of the driveshaft, it enables the wheels of the car to move at a constant speed. The connector also helps transmit power efficiently. You can learn more about CV joint driveshafts by looking at the top 3 driveshaft questions
The U-joint on the intermediate shaft may be worn or damaged. Small deviations in these joints can cause slight vibrations and wobble. Over time, these vibrations can wear out drivetrain components, including U-joints and differential seals. Additional wear on the center support bearing is also expected. If your driveshaft is leaking oil, the next step is to check your transmission.
The drive shaft is an important part of the car. They transmit power from the engine to the transmission. They also connect the axles and CV joints. When these components are in good condition, they transmit power to the wheels. If you find them loose or stuck, it can cause the vehicle to bounce. To ensure proper torque transfer, your car needs to stay on the road. While rough roads are normal, bumps and bumps are common.
air-compressor

Common signs of damaged driveshafts

If your vehicle vibrates heavily underneath, you may be dealing with a faulty propshaft. This issue limits your overall control of the vehicle and cannot be ignored. If you hear this noise frequently, the problem may be the cause and should be diagnosed as soon as possible. Here are some common symptoms of a damaged driveshaft. If you experience this noise while driving, you should have your vehicle inspected by a mechanic.
A clanging sound can also be 1 of the signs of a damaged driveshaft. A ding may be a sign of a faulty U-joint or center bearing. This can also be a symptom of worn center bearings. To keep your vehicle safe and functioning properly, it is best to have your driveshaft inspected by a certified mechanic. This can prevent serious damage to your car.
A worn drive shaft can cause difficulty turning, which can be a major safety issue. Fortunately, there are many ways to tell if your driveshaft needs service. The first thing you can do is check the u-joint itself. If it moves too much or too little in any direction, it probably means your driveshaft is faulty. Also, rust on the bearing cap seals may indicate a faulty drive shaft.
The next time your car rattles, it might be time for a mechanic to check it out. Whether your vehicle has a manual or automatic transmission, the driveshaft plays an important role in your vehicle’s performance. When 1 or both driveshafts fail, it can make the vehicle unsafe or impossible to drive. Therefore, you should have your car inspected by a mechanic as soon as possible to prevent further problems.
Your vehicle should also be regularly lubricated with grease and chain to prevent corrosion. This will prevent grease from escaping and causing dirt and grease to build up. Another common sign is a dirty driveshaft. Make sure your phone is free of debris and in good condition. Finally, make sure the driveshaft chain and cover are in place. In most cases, if you notice any of these common symptoms, your vehicle’s driveshaft should be replaced.
Other signs of a damaged driveshaft include uneven wheel rotation, difficulty turning the car, and increased drag when trying to turn. A worn U-joint also inhibits the ability of the steering wheel to turn, making it more difficult to turn. Another sign of a faulty driveshaft is the shuddering noise the car makes when accelerating. Vehicles with damaged driveshafts should be inspected as soon as possible to avoid costly repairs.

China high quality Fully Automatic Laminated Film LDPE HDPE Polythene PA CZPT 2-Side / 3-Side / 4-Side Seal Pouch Bag Making Machine with Servo-Drive System for Coffee Nuts     with Free Design CustomChina high quality Fully Automatic Laminated Film LDPE HDPE Polythene PA CZPT 2-Side / 3-Side / 4-Side Seal Pouch Bag Making Machine with Servo-Drive System for Coffee Nuts     with Free Design Custom

China Professional High Speed Fully Automatic Servo Drive Three Traks T-Shirt Bag Making Machine with Free Design Custom

Product Description

Brief  Introduction:
New designed super high speed T-shirt bag making machine,is specially for making T-shirt bags,which is double lane high speed productions,easy to operate ,high output,special servo motor driving.

Bag making Processing:
Unwind adopt a big jumbol roller(Dia1000mm) ->  Hot slitting and sealing knfives to get 2lines or 3lines ->
In-line gusset device -> Bottom sealing and cutting -> Auto handle punch -> Bag Collection 

Technical data:

Model CW-300V2+ST2
Width of Bag Making  300mm*3lines
Length of bag making  370-700mm
Max Speed of bag making  200pcs/min*3lane
Line speed 90m/min
total power 19KW
weight of machine 3100kgs
overall dimension 9500x1350x1800 mm
air compressor(not included) 6.0HP

Packing & loading

About CHOVYTING company:

Sort by machine functions:
Sort by sample bags:

Ourt team and exhibition we attend:

See you in Exhibition: K SHOW , CHINAPLAS ,CARTON FAIR,PLASTI EURASIA ISTANBUL,NPE SHOW,Arabplast,MEXICO PLASTIMAGEN

Q & A:
Q1-  Is your company a factory or a trading company?
A1-  We are a factory
Q2-  Where is your factory? How can i visit your company?
A2-  Our factory is located in HangZhou city,zHangZhoug province, China. Its about 40 minutes from ZheJiang by plane(4 hours by train). All our clients from home and abroad are warmly welcome to visit us.
Q3-  What is the suitable material for your machines?
A3-  PE, OPP, CZPT material ,etc. Are suitable for our machines
Q4-  What is type machines do you have ?
A4 –  special for all of plastic bag making machine, like shopping bag, diaper bag, courier bag, pouch bag ,rolling garbage bag, bread bag, chicken bag etc…
Q5-  How many years of your factory
A5-  Our company since 1999 till to now
Q6-  What is certificate of machine do you have
A6-  CE, ISO 2016, And more than 100 piece Patent of machine
Q7-  What about your company The development of your company
A7-  Titled as National key and new products and Pass identification of the provincial new product; and honored as patent model enterprise
Q8-  How many exhibition we took part in
A8-  We start to took part in CHINAPLAS from 2008-2018year
Q9- how many workers from your company
A9- more than 150 persones
Q10-what is size of your factory
Q10- the factory place have more than 10000 Square meters

 

How to Identify a Faulty Drive Shaft

The most common problems associated with automotive driveshafts include clicking and rubbing noises. While driving, the noise from the driver’s seat is often noticeable. An experienced auto mechanic can easily identify whether the sound is coming from both sides or from 1 side. If you notice any of these signs, it’s time to send your car in for a proper diagnosis. Here’s a guide to determining if your car’s driveshaft is faulty:
air-compressor

Symptoms of Driveshaft Failure

If you’re having trouble turning your car, it’s time to check your vehicle’s driveshaft. A bad driveshaft can limit the overall control of your car, and you should fix it as soon as possible to avoid further problems. Other symptoms of a propshaft failure include strange noises from under the vehicle and difficulty shifting gears. Squeaking from under the vehicle is another sign of a faulty driveshaft.
If your driveshaft fails, your car will stop. Although the engine will still run, the wheels will not turn. You may hear strange noises from under the vehicle, but this is a rare symptom of a propshaft failure. However, you will have plenty of time to fix the problem. If you don’t hear any noise, the problem is not affecting your vehicle’s ability to move.
The most obvious signs of a driveshaft failure are dull sounds, squeaks or vibrations. If the drive shaft is unbalanced, it is likely to damage the transmission. It will require a trailer to remove it from your vehicle. Apart from that, it can also affect your car’s performance and require repairs. So if you hear these signs in your car, be sure to have it checked by a mechanic right away.

Drive shaft assembly

When designing a propshaft, the design should be based on the torque required to drive the vehicle. When this torque is too high, it can cause irreversible failure of the drive shaft. Therefore, a good drive shaft design should have a long service life. Here are some tips to help you design a good driveshaft. Some of the main components of the driveshaft are listed below.
Snap Ring: The snap ring is a removable part that secures the bearing cup assembly in the yoke cross hole. It also has a groove for locating the snap ring. Spline: A spline is a patented tubular machined element with a series of ridges that fit into the grooves of the mating piece. The bearing cup assembly consists of a shaft and end fittings.
U-joint: U-joint is required due to the angular displacement between the T-shaped housing and the pinion. This angle is especially large in raised 4x4s. The design of the U-joint must guarantee a constant rotational speed. Proper driveshaft design must account for the difference in angular velocity between the shafts. The T-bracket and output shaft are attached to the bearing caps at both ends.
air-compressor

U-joint

Your vehicle has a set of U-joints on the driveshaft. If your vehicle needs to be replaced, you can do it yourself. You will need a hammer, ratchet and socket. In order to remove the U-joint, you must first remove the bearing cup. In some cases you will need to use a hammer to remove the bearing cup, you should be careful as you don’t want to damage the drive shaft. If you cannot remove the bearing cup, you can also use a vise to press it out.
There are 2 types of U-joints. One is held by a yoke and the other is held by a c-clamp. A full ring is safer and ideal for vehicles that are often used off-road. In some cases, a full circle can be used to repair a c-clamp u-joint.
In addition to excessive torque, extreme loads and improper lubrication are common causes of U-joint failure. The U-joint on the driveshaft can also be damaged if the engine is modified. If you are driving a vehicle with a heavily modified engine, it is not enough to replace the OE U-joint. In this case, it is important to take the time to properly lubricate these components as needed to keep them functional.

tube yoke

QU40866 Tube Yoke is a common replacement for damaged or damaged driveshaft tubes. They are desirably made of a metallic material, such as an aluminum alloy, and include a hollow portion with a lug structure at 1 end. Tube yokes can be manufactured using a variety of methods, including casting and forging. A common method involves drawing solid elements and machining them into the final shape. The resulting components are less expensive to produce, especially when compared to other forms.
The tube fork has a connection point to the driveshaft tube. The lug structure provides attachment points for the gimbal. Typically, the driveshaft tube is 5 inches in diameter and the lug structure is 4 inches in diameter. The lug structure also serves as a mounting point for the drive shaft. Once installed, Tube Yoke is easy to maintain. There are 2 types of lug structures: 1 is forged tube yoke and the other is welded.
Heavy-duty series drive shafts use bearing plates to secure the yoke to the U-joint. All other dimensions are secured with external snap rings. Yokes are usually machined to accept U-bolts. For some applications, grease fittings are used. This attachment is more suitable for off-road vehicles and performance vehicles.
air-compressor

end yoke

The end yoke of the drive shaft is an integral part of the drive train. Choosing a high-quality end yoke will help ensure long-term operation and prevent premature failure. Pat’s Driveline offers a complete line of automotive end yokes for power take-offs, differentials and auxiliary equipment. They can also measure your existing parts and provide you with high quality replacements.
A U-bolt is an industrial fastener with threaded legs. When used on a driveshaft, it provides greater stability in unstable terrain. You can purchase a U-bolt kit to secure the pinion carrier to the drive shaft. U-bolts also come with lock washers and nuts. Performance cars and off-road vehicles often use this type of attachment. But before you install it, you have to make sure the yoke is machined to accept it.
End yokes can be made of aluminum or steel and are designed to provide strength. It also offers special bolt styles for various applications. CZPT’s drivetrain is also stocked with a full line of automotive flange yokes. The company also produces custom flanged yokes for many popular brands. Since the company has a comprehensive line of replacement flange yokes, it can help you transform your drivetrain from non-serviceable to serviceable.

bushing

The first step in repairing or replacing an automotive driveshaft is to replace worn or damaged bushings. These bushings are located inside the drive shaft to provide a smooth, safe ride. The shaft rotates in a rubber sleeve. If a bushing needs to be replaced, you should first check the manual for recommendations. Some of these components may also need to be replaced, such as the clutch or swingarm.

China Professional High Speed Fully Automatic Servo Drive Three Traks T-Shirt Bag Making Machine     with Free Design CustomChina Professional High Speed Fully Automatic Servo Drive Three Traks T-Shirt Bag Making Machine     with Free Design Custom

China Good quality Fully Automatic Sealing Machine Type and Plastic Material Servo Drive Bag Making Machine with Best Sales

Product Description

Full automatic high speed Shopping bag making machine
Usage:
Suitable material: HDPE, LDPE
Can make printed-bags.
With PLC, double servo(step) motors
photocell eye
punching device
computer control
conveyor belt

Model MD-DFR450*2C
Max Cutting Width 200-400*2lines
Max Cutting Length 200-600mm*2lines
Thickness 0.015-0.035mm
Speed 200-250pcs/min*2lines
Air Compressor 7.5HP
Total Power 7.5KW
Weight Of Machine 2200kg
Dimensions 6*1.55*1.7m

Model MD-DFR-500 MD-DFR-700
Max Sealing And Cutting Width 400mm 600mm
Sealing And Cutting Length 100-1000mm 100-1000mm
Sealing And Cutting Thickness 0.005-0.5mm 0.005-0.5mm
Error In Length ±1mm ±1mm
Bag-Making Speed 40-120pcs/min 40-120pcs/min
Power Of Main Motor 0.75kw 1.1kw
Heating Power 2kw 2.4kw
Total Power 3kw 3.8kw
Weight Of Machine 800kg 900kg
Dimensions 2.6*1.1*1.5m 2.6*1.3*1.5m

Model MD-DFR350*2 MD-DFR450*2
Width Of Bag-Making 30*300mm 30*400mm
Length Of Bag-Making 10-999mm 10-999mm
Speed Of Bag-Making (150-200)pc/min*2 (150-200)pc/min*2
Power Of Motor 2kw 2kw
Power Of Electric-thermal 3kw 4kw
Weight of machine 1000kg 1200kg
Dimensions 3*1.4*1.6m 3*1.5*1.6m

Model MD-DFR-350*2B MD-DFR-450*2B
Max Width Of Bag-Making 300mm 400mm
MAX Length Of Bag-Making 600mm 600mm
Bag-Making Thickness 0.015-0.035mm 0.015-0.035mm
Bag-Making Speed 150-200pcs/min*2 150-200pcs/min*2
Air Pressure 5kg/cm² 5kg/cm²
Total Power 7kw 9kw
Weight Of Machine 1400kg 1600kg
Dimensions 6*1.4*1.6m 4*1.5*1.6m

Company:
HangZhou Mingde Machinery Co., Ltd got its start in 2571 and built a modern manufacturing complex in HangZhou. Although we are a young firm, we are outfitted with a team of dedicated and loyal employees who put heavy concentration and focus on how to boost our product quality and competiveness. Near ZheJiang Port, we enjoy a convenient location, which allows us to deliver our good condition paper converting machinery to clients in an ultra-fast fashion.  To date, we have attracted and kept countless customers both at home and abroad.

Our company, Mingde is the best choice for paper container manufacturer.Believe your choice, believe in our company. We sincerely look forward to working with you hand in hand to create success altogether.workshop for film blowing machine :
Machine packing and Shipment :
Exhibition:

Service:
Our company will provide you the good after services. We can help you solve the problem through video, email, phone, 24 hours hot line. If needed, we can also let our engineer go to your country to solve the problem. We hope all the customers will be satisfied with our machines and services.
 

FAQ:
1.Trade company or manufacture?

we are a manufacture of paper cup machine.
2.How to tour our factory?

Some lines you can chooes. First, you can come to HangZhou air port, then by air to HangZhou air port, then we can go whenzhou air port to pick up you.

Second, you can to ZheJiang , then from ZheJiang air port to whenzhou air port or by the fast train HangZhou then we go air port or train station to pick up you.

3.What about the warranty?

All our machine have 1 year warranty. if the machine speres broken because the quality not good, then we can provide the spares for you by free.

4.What about the traning?

We welcome you learn the machine use in our factory. before the machine finished you can come to our factory , we can arrange the enginner teach you the simple operate. we provide the food for you.

5.About the machine shipping?

Normal our machine send to customers by sea, port to port almost used. like FOB, CIF.

6.About the machine packing?

Our machine normal use the nude packing. if you need wooden case packing and require fumigation, before order you need tell us so we arrange for you.

You can contact us from the following information:
contact person:Vivian Xue 
 
website:mingdechina

How to tell if your driveshaft needs replacing

What is the cause of the unbalanced drive shaft? Unstable U-joint? Your car may make clicking noises while driving. If you can hear it from both sides, it might be time to hand it over to the mechanic. If you’re not sure, read on to learn more. Fortunately, there are many ways to tell if your driveshaft needs replacing.

unbalanced

An unbalanced driveshaft can be the source of strange noises and vibrations in your vehicle. To fix this problem, you should contact a professional. You can try a number of things to fix it, including welding and adjusting the weight. The following are the most common methods. In addition to the methods above, you can use standardized weights to balance the driveshaft. These standardized weights are attached to the shaft by welders.
An unbalanced drive shaft typically produces lateral vibrations per revolution. This type of vibration is usually caused by a damaged shaft, missing counterweights, or a foreign object stuck on the drive shaft. On the other hand, torsional vibrations occur twice per revolution, and they are caused by shaft phase shifts. Finally, critical speed vibration occurs when the RPM of the drive shaft exceeds its rated capacity. If you suspect a driveshaft problem, check the following:
Manually adjusting the imbalance of a drive shaft is not the easiest task. To avoid the difficulty of manual balancing, you can choose to use standardized weights. These weights are fixed on the outer circumference of the drive shaft. The operator can manually position the weight on the shaft with special tools, or use a robot. However, manual balancers have many disadvantages.
air-compressor

unstable

When the angular velocity of the output shaft is not constant, it is unstable. The angular velocity of the output shaft is 0.004 at ph = 29.5 and 1.9 at t = 1.9. The angular velocity of the intermediate shaft is not a problem. But when it’s unstable, the torque applied to it is too much for the machine. It might be a good idea to check the tension on the shaft.
An unstable drive shaft can cause a lot of noise and mechanical vibration. It can lead to premature shaft fatigue failure. CZPT studies the effect of shaft vibration on the rotor bearing system. They investigated the effect of flex coupling misalignment on the vibration of the rotor bearing system. They assume that the vibrational response has 2 components: x and y. However, this approach has limited application in many situations.
Experimental results show that the presence of cracks in the output shaft may mask the unbalanced excitation characteristics. For example, the presence of superharmonic peaks on the spectrum is characteristic of cracks. The presence of cracks in the output shaft masks unbalanced excitation characteristics that cannot be detected in the transient response of the input shaft. Figure 8 shows that the frequency of the rotor increases at critical speed and decreases as the shaft passes the natural frequency.

Unreliable

If you’re having trouble driving your car, chances are you’ve run into an unreliable driveshaft. This type of drivetrain can cause the wheels to stick or not turn at all, and also limit the overall control of the car. Whatever the reason, these issues should be resolved as soon as possible. Here are some symptoms to look for when diagnosing a driveshaft fault. Let’s take a closer look.
The first symptom you may notice is an unreliable drive shaft. You may feel vibrations, or hear noises under the vehicle. Depending on the cause, it could be a broken joint or a broken shaft. The good news is that driveshaft repairs are generally relatively inexpensive and take less time than a complete drivetrain replacement. If you’re not sure what to do, CZPT has a guide to replacing the U-connector.
One of the most common signs of an unreliable driveshaft is clanging and vibration. These sounds can be caused by worn bushings, loose U-joints, or damaged center bearings. This can cause severe vibration and noise. You can also feel these vibrations through the steering wheel or the floor. An unreliable driveshaft is a symptom of a bigger problem.
air-compressor

Unreliable U-joints

A car with an unreliable U-joint on the drive shaft can be dangerous. A bad u-joint can prevent the vehicle from driving properly and may even cause you trouble. Unreliable u-joints are cheap to replace and you should try getting parts from quality manufacturers. Unreliable U-joints can cause the car to vibrate in the chassis or gear lever. This is a sure sign that your car has been neglected in maintenance.
Replacing a U-joint is not a complicated task, but it requires special tools and a lot of elbow grease. If you don’t have the right tools, or you’re unfamiliar with mechanical terminology, it’s best to seek the help of a mechanic. A professional mechanic will be able to accurately assess the problem and propose an appropriate solution. But if you don’t feel confident enough, you can replace your own U-connector by following a few simple steps.
To ensure the vehicle’s driveshaft is not damaged, check the U-joint for wear and lubrication. If the U-joint is worn, the metal parts are likely to rub against each other, causing wear. The sooner a problem is diagnosed, the faster it can be resolved. Also, the longer you wait, the more you lose on repairs.

damaged drive shaft

The driveshaft is the part of the vehicle that connects the wheels. If the driveshaft is damaged, the wheels may stop turning and the vehicle may slow down or stop moving completely. It bears the weight of the car itself as well as the load on the road. So even a slight bend or break in the drive shaft can have dire consequences. Even a piece of loose metal can become a lethal missile if dropped from a vehicle.
If you hear a screeching noise or growl from your vehicle when shifting gears, your driveshaft may be damaged. When this happens, damage to the u-joint and excessive slack in the drive shaft can result. These conditions can further damage the drivetrain, including the front half. You should replace the driveshaft as soon as you notice any symptoms. After replacing the driveshaft, you can start looking for signs of wear.
A knocking sound is a sign of damage to the drive shaft. If you hear this sound while driving, it may be due to worn couplings, damaged propshaft bearings, or damaged U-joints. In some cases, the knocking noise can even be caused by a damaged U-joint. When this happens, you may need to replace the entire driveshaft, requiring a new one.
air-compressor

Maintenance fees

The cost of repairing a driveshaft varies widely, depending on the type and cause of the problem. A new driveshaft costs between $300 and $1,300, including labor. Repairing a damaged driveshaft can cost anywhere from $200 to $300, depending on the time required and the type of parts required. Symptoms of a damaged driveshaft include unresponsiveness, vibration, chassis noise and a stationary car.
The first thing to consider when estimating the cost of repairing a driveshaft is the type of vehicle you have. Some vehicles have more than one, and the parts used to make them may not be compatible with other cars. Even if the same car has 2 driveshafts, the damaged ones will cost more. Fortunately, many auto repair shops offer free quotes to repair damaged driveshafts, but be aware that such work can be complicated and expensive.

China Good quality Fully Automatic Sealing Machine Type and Plastic Material Servo Drive Bag Making Machine     with Best SalesChina Good quality Fully Automatic Sealing Machine Type and Plastic Material Servo Drive Bag Making Machine     with Best Sales