Tag Archives: die cutter machine

China Custom High Quality Low Price Auto Creasing Cutter Machine for Die Making with Free Design Custom

Product Description

Auto Cutter Machine for Die Making

Technical Parameters         Blade thickness(mm)
0.71 (VK_QX_A) 1.07(VK_QX_B)
Blade height(mm) 23-24mm 23-24mm
Maximum feeding speed 30m/min
Feeding Accuracy 0.03/300mm
Bridge Mode
  1. Automatic continuous Die Punch bridge, bridge height adjustable(15-18mm)Width(5-10mm) Gear Motor drive
Cutting Mode
  1. Automatic Die Punch cut(Automatic identification alarm and self Monitor)Gear Motor Driven Full Power
Rule Cassettes
  1. 2 Standard resistance -free rule cassettes
Function/Advantages
  1. Connect to the computer of automatic bender  machine without manual operation
  2. Intelligent cutting line program differential lengths of creasing line can be intelligently calculated according to differential over lap patterns,it is more convenience and time saving without manual operation. One key select lines by colour or layers.  Automatically break off and shrink.
  3. Cut the arc line.
  4. Multi tasks :several groups of Creasing Lines can be finished simultaneously with high speed and Bridging and cutting can be done at same times,as well as Bending Rules with Auto bender machine
Best Files format DXF,DWG,AL,CDR,PLT
Weight 230kg Size 1660*1150*1540
Power 110V 220V/50HZ 60HZ  500W
Air Pressure 0.6-0.8Mpa
Warranty 12 Month Mother Board Life Long Warranty

Traning service
Training: The training is free of charge.You just meed to pay for the around tickets,food and hotel.The whole training will cost 7 days.
 

  1. We will dispatch our technician to your company to install the machine and train your technicians, The whole training lessons are including the machine and software.
  2.  More ever we can Train You how to install the machine by Team viewer under our Engineers who is good at English and the machine.

 
Customized content
A.product range
Flat&rotary die board,cutting rules,creasing rules,creasing matrix,anvil cover,doctor blade,manual die making machine,auto-bender machine.
sample making machine,nick grinder,trash-cleaning machine,folding gluer machine and so on. We are the general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China.
B.our advantages
1.we are factory providing die making whole parts.
2.MOQ or NO MOQ
3.Delivery 7-30 days on time
4.Top quality guaranteed by skilled workers,managing system and status of facilities.
5.Advanced equipment.such as laser cutting machine,automatic bender machine.Sample making machine.etc.
6.Customized size and spec/OEM available
7.Near HangZhou and ZheJiang .convenient transpotation
8.With famous Grandcorp Brand and new YT brand
9.The general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China
C.Better service
1.QC system 100% inspection before shipment
3.Packing standard package/pallet or container/As per customized

The picture for you reference 
                          

>>> Package & Shipping
Each machine is well packed with export standard wooden box.
We will make photos for the machine before the shipping and let you know the processing of the packing and loading.

>>> Our Services
1. Our machine is guaranteed for 1 year, not including normal consuming parts.
2. 24 hour technical support by email or calling -137-1262-4566.
3. User-friendly English manual and Video CD for machine using and maintaining.
4. Our self-developed English software can do all kinds of pattern recognition.
5. We supply 1 year warranty and 5 years engineering service.

>>> Please Let Us Know
1.what machine do you need?
2.what materials will be processed? The size and thickness?
3.what is your business scope? Are you end user or distributor?

Any more product information, please contact us !  Customer Needs is my Pursuit !

The Four Basic Components of a Screw Shaft

There are 4 basic components of a screw shaft: the Head, the Thread angle, and the Threaded shank. These components determine the length, shape, and quality of a screw. Understanding how these components work together can make purchasing screws easier. This article will cover these important factors and more. Once you know these, you can select the right type of screw for your project. If you need help choosing the correct type of screw, contact a qualified screw dealer.

Thread angle

The angle of a thread on a screw shaft is the difference between the 2 sides of the thread. Threads that are unified have a 60 degree angle. Screws have 2 parts: a major diameter, also known as the screw’s outside diameter, and a minor diameter, or the screw’s root diameter. A screw or nut has a major diameter and a minor diameter. Each has its own angle, but they all have 1 thing in common – the angle of thread is measured perpendicularly to the screw’s axis.
The pitch of a screw depends on the helix angle of the thread. In a single-start screw, the lead is equal to the pitch, and the thread angle of a multiple-start screw is based on the number of starts. Alternatively, you can use a square-threaded screw. Its square thread minimizes the contact surface between the nut and the screw, which improves efficiency and performance. A square thread requires fewer motors to transfer the same load, making it a good choice for heavy-duty applications.
A screw thread has 4 components. First, there is the pitch. This is the distance between the top and bottom surface of a nut. This is the distance the thread travels in a full revolution of the screw. Next, there is the pitch surface, which is the imaginary cylinder formed by the average of the crest and root height of each tooth. Next, there is the pitch angle, which is the angle between the pitch surface and the gear axis.
screwshaft

Head

There are 3 types of head for screws: flat, round, and hexagonal. They are used in industrial applications and have a flat outer face and a conical interior. Some varieties have a tamper-resistant pin in the head. These are usually used in the fabrication of bicycle parts. Some are lightweight, and can be easily carried from 1 place to another. This article will explain what each type of head is used for, and how to choose the right 1 for your screw.
The major diameter is the largest diameter of the thread. This is the distance between the crest and the root of the thread. The minor diameter is the smaller diameter and is the distance between the major and minor diameters. The minor diameter is half the major diameter. The major diameter is the upper surface of the thread. The minor diameter corresponds to the lower extreme of the thread. The thread angle is proportional to the distance between the major and minor diameters.
Lead screws are a more affordable option. They are easier to manufacture and less expensive than ball screws. They are also more efficient in vertical applications and low-speed operations. Some types of lead screws are also self-locking, and have a high coefficient of friction. Lead screws also have fewer parts. These types of screw shafts are available in various sizes and shapes. If you’re wondering which type of head of screw shaft to buy, this article is for you.

Threaded shank

Wood screws are made up of 2 parts: the head and the shank. The shank is not threaded all the way up. It is only partially threaded and contains the drive. This makes them less likely to overheat. Heads on wood screws include Oval, Round, Hex, Modified Truss, and Flat. Some of these are considered the “top” of the screw.
Screws come in many sizes and thread pitches. An M8 screw has a 1.25-mm thread pitch. The pitch indicates the distance between 2 identical threads. A pitch of 1 is greater than the other. The other is smaller and coarse. In most cases, the pitch of a screw is indicated by the letter M followed by the diameter in millimetres. Unless otherwise stated, the pitch of a screw is greater than its diameter.
Generally, the shank diameter is smaller than the head diameter. A nut with a drilled shank is commonly used. Moreover, a cotter pin nut is similar to a castle nut. Internal threads are usually created using a special tap for very hard metals. This tap must be followed by a regular tap. Slotted machine screws are usually sold packaged with nuts. Lastly, studs are often used in automotive and machine applications.
In general, screws with a metric thread are more difficult to install and remove. Fortunately, there are many different types of screw threads, which make replacing screws a breeze. In addition to these different sizes, many of these screws have safety wire holes to keep them from falling. These are just some of the differences between threaded screw and non-threaded. There are many different types of screw threads, and choosing the right 1 will depend on your needs and your budget.
screwshaft

Point

There are 3 types of screw heads with points: cone, oval, and half-dog. Each point is designed for a particular application, which determines its shape and tip. For screw applications, cone, oval, and half-dog points are common. Full dog points are not common, and they are available in a limited number of sizes and lengths. According to ASTM standards, point penetration contributes as much as 15% of the total holding power of the screw, but a cone-shaped point may be more preferred in some circumstances.
There are several types of set screws, each with its own advantage. Flat-head screws reduce indentation and frequent adjustment. Dog-point screws help maintain a secure grip by securing the collar to the screw shaft. Cup-point set screws, on the other hand, provide a slip-resistant connection. The diameter of a cup-point screw is usually half of its shaft diameter. If the screw is too small, it may slack and cause the screw collar to slip.
The UNF series has a larger area for tensile stress than coarse threads and is less prone to stripping. It’s used for external threads, limited engagement, and thinner walls. When using a UNF, always use a standard tap before a specialized tap. For example, a screw with a UNF point is the same size as a type C screw but with a shorter length.

Spacer

A spacer is an insulating material that sits between 2 parts and centers the shaft of a screw or other fastener. Spacers come in different sizes and shapes. Some of them are made of Teflon, which is thin and has a low coefficient of friction. Other materials used for spacers include steel, which is durable and works well in many applications. Plastic spacers are available in various thicknesses, ranging from 4.6 to 8 mm. They’re suitable for mounting gears and other items that require less contact surface.
These devices are used for precision fastening applications and are essential fastener accessories. They create clearance gaps between the 2 joined surfaces or components and enable the screw or bolt to be torqued correctly. Here’s a quick guide to help you choose the right spacer for the job. There are many different spacers available, and you should never be without one. All you need is a little research and common sense. And once you’re satisfied with your purchase, you can make a more informed decision.
A spacer is a component that allows the components to be spaced appropriately along a screw shaft. This tool is used to keep space between 2 objects, such as the spinning wheel and an adjacent metal structure. It also helps ensure that a competition game piece doesn’t rub against an adjacent metal structure. In addition to its common use, spacers can be used in many different situations. The next time you need a spacer, remember to check that the hole in your screw is threaded.
screwshaft

Nut

A nut is a simple device used to secure a screw shaft. The nut is fixed on each end of the screw shaft and rotates along its length. The nut is rotated by a motor, usually a stepper motor, which uses beam coupling to accommodate misalignments in the high-speed movement of the screw. Nuts are used to secure screw shafts to machined parts, and also to mount bearings on adapter sleeves and withdrawal sleeves.
There are several types of nut for screw shafts. Some have radial anti-backlash properties, which prevent unwanted radial clearances. In addition, they are designed to compensate for thread wear. Several nut styles are available, including anti-backlash radial nuts, which have a spring that pushes down on the nut’s flexible fingers. Axial anti-backlash nuts also provide thread-locking properties.
To install a ball nut, you must first align the tangs of the ball and nut. Then, you must place the adjusting nut on the shaft and tighten it against the spacer and spring washer. Then, you need to lubricate the threads, the ball grooves, and the spring washers. Once you’ve installed the nut, you can now install the ball screw assembly.
A nut for screw shaft can be made with either a ball or a socket. These types differ from hex nuts in that they don’t need end support bearings, and are rigidly mounted at the ends. These screws can also have internal cooling mechanisms to improve rigidity. In this way, they are easier to tension than rotating screws. You can also buy hollow stationary screws for rotator nut assemblies. This type is great for applications requiring high heat and wide temperature changes, but you should be sure to follow the manufacturer’s instructions.

China Custom High Quality Low Price Auto Creasing Cutter Machine for Die Making   with Free Design CustomChina Custom High Quality Low Price Auto Creasing Cutter Machine for Die Making   with Free Design Custom

China Custom Auto Cutter Machine for Die Cutting with high quality

Product Description

Auto Cutter Machine for Die Making

Technical Parameters         Blade thickness(mm)
0.71 (VK_QX_A) 1.07(VK_QX_B)
Blade height(mm) 23-24mm 23-24mm
Maximum feeding speed 30m/min
Feeding Accuracy 0.03/300mm
Bridge Mode
  1. Automatic continuous Die Punch bridge, bridge height adjustable(15-18mm)Width(5-10mm) Gear Motor drive
Cutting Mode
  1. Automatic Die Punch cut(Automatic identification alarm and self Monitor)Gear Motor Driven Full Power
Rule Cassettes
  1. 2 Standard resistance -free rule cassettes
Function/Advantages
  1. Connect to the computer of automatic bender  machine without manual operation
  2. Intelligent cutting line program differential lengths of creasing line can be intelligently calculated according to differential over lap patterns,it is more convenience and time saving without manual operation. One key select lines by colour or layers.  Automatically break off and shrink.
  3. Cut the arc line.
  4. Multi tasks :several groups of Creasing Lines can be finished simultaneously with high speed and Bridging and cutting can be done at same times,as well as Bending Rules with Auto bender machine
Best Files format DXF,DWG,AL,CDR,PLT
Weight 230kg Size 1660*1150*1540
Power 110V 220V/50HZ 60HZ  500W
Air Pressure 0.6-0.8Mpa
Warranty 12 Month Mother Board Life Long Warranty

Traning service
Training: The training is free of charge.You just meed to pay for the around tickets,food and hotel.The whole training will cost 7 days.
 

  1. We will dispatch our technician to your company to install the machine and train your technicians, The whole training lessons are including the machine and software.
  2.  More ever we can Train You how to install the machine by Team viewer under our Engineers who is good at English and the machine.

 
Customized content
A.product range
Flat&rotary die board,cutting rules,creasing rules,creasing matrix,anvil cover,doctor blade,manual die making machine,auto-bender machine.
sample making machine,nick grinder,trash-cleaning machine,folding gluer machine and so on. We are the general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China.
B.our advantages
1.we are factory providing die making whole parts.
2.MOQ or NO MOQ
3.Delivery 7-30 days on time
4.Top quality guaranteed by skilled workers,managing system and status of facilities.
5.Advanced equipment.such as laser cutting machine,automatic bender machine.Sample making machine.etc.
6.Customized size and spec/OEM available
7.Near HangZhou and ZheJiang .convenient transpotation
8.With famous Grandcorp Brand and new YT brand
9.The general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China
C.Better service
1.QC system 100% inspection before shipment
3.Packing standard package/pallet or container/As per customized

The picture for you reference 
                          

>>> Package & Shipping
Each machine is well packed with export standard wooden box.
We will make photos for the machine before the shipping and let you know the processing of the packing and loading.

>>> Our Services
1. Our machine is guaranteed for 1 year, not including normal consuming parts.
2. 24 hour technical support by email or calling -137-1262-4566.
3. User-friendly English manual and Video CD for machine using and maintaining.
4. Our self-developed English software can do all kinds of pattern recognition.
5. We supply 1 year warranty and 5 years engineering service.

>>> Please Let Us Know
1.what machine do you need?
2.what materials will be processed? The size and thickness?
3.what is your business scope? Are you end user or distributor?

Any more product information, please contact us !  Customer Needs is my Pursuit !

How to Determine the Quality of a Worm Shaft

There are many advantages of a worm shaft. It is easier to manufacture, as it does not require manual straightening. Among these benefits are ease of maintenance, reduced cost, and ease of installation. In addition, this type of shaft is much less prone to damage due to manual straightening. This article will discuss the different factors that determine the quality of a worm shaft. It also discusses the Dedendum, Root diameter, and Wear load capacity.
worm shaft

Root diameter

There are various options when choosing worm gearing. The selection depends on the transmission used and production possibilities. The basic profile parameters of worm gearing are described in the professional and firm literature and are used in geometry calculations. The selected variant is then transferred to the main calculation. However, you must take into account the strength parameters and the gear ratios for the calculation to be accurate. Here are some tips to choose the right worm gearing.
The root diameter of a worm gear is measured from the center of its pitch. Its pitch diameter is a standardized value that is determined from its pressure angle at the point of zero gearing correction. The worm gear pitch diameter is calculated by adding the worm’s dimension to the nominal center distance. When defining the worm gear pitch, you have to keep in mind that the root diameter of the worm shaft must be smaller than the pitch diameter.
Worm gearing requires teeth to evenly distribute the wear. For this, the tooth side of the worm must be convex in the normal and centre-line sections. The shape of the teeth, referred to as the evolvent profile, resembles a helical gear. Usually, the root diameter of a worm gear is more than a quarter inch. However, a half-inch difference is acceptable.
Another way to calculate the gearing efficiency of a worm shaft is by looking at the worm’s sacrificial wheel. A sacrificial wheel is softer than the worm, so most wear and tear will occur on the wheel. Oil analysis reports of worm gearing units almost always show a high copper and iron ratio, suggesting that the worm’s gearing is ineffective.

Dedendum

The dedendum of a worm shaft refers to the radial length of its tooth. The pitch diameter and the minor diameter determine the dedendum. In an imperial system, the pitch diameter is referred to as the diametral pitch. Other parameters include the face width and fillet radius. Face width describes the width of the gear wheel without hub projections. Fillet radius measures the radius on the tip of the cutter and forms a trochoidal curve.
The diameter of a hub is measured at its outer diameter, and its projection is the distance the hub extends beyond the gear face. There are 2 types of addendum teeth, 1 with short-addendum teeth and the other with long-addendum teeth. The gears themselves have a keyway (a groove machined into the shaft and bore). A key is fitted into the keyway, which fits into the shaft.
Worm gears transmit motion from 2 shafts that are not parallel, and have a line-toothed design. The pitch circle has 2 or more arcs, and the worm and sprocket are supported by anti-friction roller bearings. Worm gears have high friction and wear on the tooth teeth and restraining surfaces. If you’d like to know more about worm gears, take a look at the definitions below.
worm shaft

CZPT’s whirling process

Whirling process is a modern manufacturing method that is replacing thread milling and hobbing processes. It has been able to reduce manufacturing costs and lead times while producing precision gear worms. In addition, it has reduced the need for thread grinding and surface roughness. It also reduces thread rolling. Here’s more on how CZPT whirling process works.
The whirling process on the worm shaft can be used for producing a variety of screw types and worms. They can produce screw shafts with outer diameters of up to 2.5 inches. Unlike other whirling processes, the worm shaft is sacrificial, and the process does not require machining. A vortex tube is used to deliver chilled compressed air to the cutting point. If needed, oil is also added to the mix.
Another method for hardening a worm shaft is called induction hardening. The process is a high-frequency electrical process that induces eddy currents in metallic objects. The higher the frequency, the more surface heat it generates. With induction heating, you can program the heating process to harden only specific areas of the worm shaft. The length of the worm shaft is usually shortened.
Worm gears offer numerous advantages over standard gear sets. If used correctly, they are reliable and highly efficient. By following proper setup guidelines and lubrication guidelines, worm gears can deliver the same reliable service as any other type of gear set. The article by Ray Thibault, a mechanical engineer at the University of Virginia, is an excellent guide to lubrication on worm gears.

Wear load capacity

The wear load capacity of a worm shaft is a key parameter when determining the efficiency of a gearbox. Worms can be made with different gear ratios, and the design of the worm shaft should reflect this. To determine the wear load capacity of a worm, you can check its geometry. Worms are usually made with teeth ranging from 1 to 4 and up to twelve. Choosing the right number of teeth depends on several factors, including the optimisation requirements, such as efficiency, weight, and centre-line distance.
Worm gear tooth forces increase with increased power density, causing the worm shaft to deflect more. This reduces its wear load capacity, lowers efficiency, and increases NVH behavior. Advances in lubricants and bronze materials, combined with better manufacturing quality, have enabled the continuous increase in power density. Those 3 factors combined will determine the wear load capacity of your worm gear. It is critical to consider all 3 factors before choosing the right gear tooth profile.
The minimum number of gear teeth in a gear depends on the pressure angle at zero gearing correction. The worm diameter d1 is arbitrary and depends on a known module value, mx or mn. Worms and gears with different ratios can be interchanged. An involute helicoid ensures proper contact and shape, and provides higher accuracy and life. The involute helicoid worm is also a key component of a gear.
Worm gears are a form of ancient gear. A cylindrical worm engages with a toothed wheel to reduce rotational speed. Worm gears are also used as prime movers. If you’re looking for a gearbox, it may be a good option. If you’re considering a worm gear, be sure to check its load capacity and lubrication requirements.
worm shaft

NVH behavior

The NVH behavior of a worm shaft is determined using the finite element method. The simulation parameters are defined using the finite element method and experimental worm shafts are compared to the simulation results. The results show that a large deviation exists between the simulated and experimental values. In addition, the bending stiffness of the worm shaft is highly dependent on the geometry of the worm gear toothings. Hence, an adequate design for a worm gear toothing can help reduce the NVH (noise-vibration) behavior of the worm shaft.
To calculate the worm shaft’s NVH behavior, the main axes of moment of inertia are the diameter of the worm and the number of threads. This will influence the angle between the worm teeth and the effective distance of each tooth. The distance between the main axes of the worm shaft and the worm gear is the analytical equivalent bending diameter. The diameter of the worm gear is referred to as its effective diameter.
The increased power density of a worm gear results in increased forces acting on the corresponding worm gear tooth. This leads to a corresponding increase in deflection of the worm gear, which negatively affects its efficiency and wear load capacity. In addition, the increasing power density requires improved manufacturing quality. The continuous advancement in bronze materials and lubricants has also facilitated the continued increase in power density.
The toothing of the worm gears determines the worm shaft deflection. The bending stiffness of the worm gear toothing is also calculated by using a tooth-dependent bending stiffness. The deflection is then converted into a stiffness value by using the stiffness of the individual sections of the worm shaft. As shown in figure 5, a transverse section of a two-threaded worm is shown in the figure.

China Custom Auto Cutter Machine for Die Cutting   with high qualityChina Custom Auto Cutter Machine for Die Cutting   with high quality