Tag Archives: engraving machine

China wholesaler Crystal Cube Glass 2D 3D Photo Laser Engraving Machine with Best Sales

Product Description

Crystal Cube Glass 2D 3D Photo Laser Engraving Machine

Product Description:
2D/3D crystal glass laser engraving machine widely use in 2D, 3D personalized customized photos inside engraving on crystal, glass and Acrylic.
The laser engraving machine is really a fine processing machine with advantages of high fidelity and high stability, which is definitely suitable for fine model engraving processing centers, photo printing shops, personalized gifts shops, crystal gifts mass production ,that’s elaboration for your home decoration.

Applicable Area:
3D crystal laser inner subsurface engraving machine is a high resolution laser engraving machine, is really a fine processing machine with
advantages of high fidelity and high stablity, which is definitely suitable for fine model engraving processing centers, gift shops, craft shops, photo printing shops, wedding photography, souvenirs, personalizes gifts shops,etc.

Working Processing:

Suitable material :
Our 3D Crystal Laser Inner Subsurface Engraving Machine is suitable for engraving inside of the crystal cube, common glass. transparent acrylic.

Samples:
Our 2D/3D Crystal Laser Inner Subsurface Engraving Machine adopts industrial design, which can engrave 1 big block of crystal or several small blocks at the same time. Its products can give person crystal-clear and fine noble visual image, that’ s elaboration for your home decoration
 

Advantages :
1.CE,FCC, FDA approved,
2.This machine can engraving both 2D nad 3D, (depends on your design).
3. Our machine good for quantity production.
4. With newest laser, high speed 18) is specializing in manufacturing Laser Marking Machine, Glass Laser Engraving Machine, Laser Cutting Machine and etc from 2006, which is a national high-tech enterprise integrating with R&D, manufactuning and Selling. The Company have obtained independent Export and Import Rights, meanwhile, all the products have passed the CE,FCC,SGS,TUV and FDA special for USA market. Warmly welcome you to visit our facotry.

After-sale service:
1.We will train you the technology at our factory for free.
2.Our engineers could serve you 24 hours online.
3.We will send you the video show you how to use the machine step by step.
4.24 months guarantee for whole machine.
5.Machine has been adjusted before delivery.

Contact us:

Warmly welcome you visit our factory! ! !
Warmly welcome you contact us directly for more information! ! !

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China wholesaler Crystal Cube Glass 2D 3D Photo Laser Engraving Machine   with Best SalesChina wholesaler Crystal Cube Glass 2D 3D Photo Laser Engraving Machine   with Best Sales

China wholesaler CNC Metal Cutting Fiber Laser Engraving Machine near me shop

Product Description

KH-4571 Fiber Laser Cutting Machine

Features:

1.The medium-power laser cutting machine with the highest precision in China, it can cut small metal bike design with size of half a coin.

2.Equipped with original japan imported servo motor and ZheJiang precise ball screw CZPT rail, highest speed up to 40m/min and accelerated speed up to 1 G, 120 holes can be cut within 1 minute.

3.Integrated machine accessories, fast disassembly, left and right drawers collecting saves space.

4.Professionally cutting 0.5-14mm carbon steel, 0.5-10mm stainless steel, galvanized steel, eletrogalvanized metal sheet, silicium steel and some other kinds of thin metal sheets.  (The laser brand can be customized, power optional from 500w-3000w )
 

SPECIFICATION OF KH-4571 FIBER LASER CUTTING MACHINE
Working area 2000 mm * 4000mm
Laser Power 500W/ 1000W/ 2000W/ 3000W
Laser Type Fiber laser, water-cooling
Laser wavelength 1080nm
Running speed 0-60m/min
CNC or Not CNC
Resetting Position Accuracy ≤±0.01mm
Control Software Cypcut, Weihong
Operating Temperature 0 – 40 ° C
Graphic format supported BMP, HPGL(PLT), JPEG, DXF,AI, DST
Transfer method Double drive rack and pinion
Drive modor Imported servo motor and servo drive
Applied material Carbon steel/SS and other metal plates
Warranty 2 Years
Packing Dimension 5200mm * 3100mm * 2000mm (L*W*H) 
Net Weight Approximately 3000 KG

 

Applicable materials for laser cutting machine for metal

Fiber Laser Cutting Equipment is suitable for metal cutting with Stainless Steel Sheet, Mild Steel Plate, Carbon Steel Sheet, Alloy Steel Plate, Spring Steel Sheet, Iron Plate, Galvanized Iron, Galvanized Sheet, Aluminum Plate, Copper Sheet, Brass Sheet, Bronze Plate, Gold Plate, Silver Plate, Titanium Plate, Metal Sheet, Metal Plate, Tubes and Pipes, etc.

Application Industries 

Fiber Laser Cutting Machine is widely used in manufacturing Billboard, Advertising, Signs, Signage, Metal Letters, LED Letters, Kitchen Ware, Advertising Letters, Sheet Metal Processing, Metals Components and Parts, Ironware, Chassis, Racks & Cabinets Processing, Metal Crafts, Metal Art Ware, Elevator Panel Cutting, Hardware, Auto Parts, Glasses Frame, Electronic Parts, Nameplates, etc.

Configuration:

Configuration for fiber metal laser cutting machine

4000*2000mm working area;

Raytools laser cutting head;

X,Y axis Japan YASKAWA/ CZPT servo motor;

Z axis Japan CZPT servo motor;

ZheJiang HIWIN guide rail;

ZheJiang YYC gear rack;

Japan SHIMPO reducer;  

ZheJiang TBI ball screw;

Japan /ZheJiang pneumatic components;

France Schneider electrical components;

Cypcut control system.

Application:

 

Packaging & Shipping

1. Kahan CNC machine and accessories are covered by plastic sheet first.
2. Then the whole machine is packed by plywood case used for export. 
3. Kahan CNC machine can be delivered by sea, by train, or by plane depending on customers.

 

Delivery Detail:

Shipped in 15-30 working days after payment.

Guarantee:

2 years warranty for the whole machine. Within 24 months under normal use and maintenance, if something is wrong with the machine, you will get spare part for free. After 24 months, you will get spare parts at cost price. You will also get technical support and service all the lifetime.

Technical support:

1. Technical support by phone, email or WhatsApp/Skype around the clock.
2. Friendly English version manual and operation video CD disk.
3. If needed, we can send our engineer to your site for training or you can send the operator to our factory for training.

After sales services: 

Normal machine is properly adjusted before dispatch. You will be CZPT to use the machine immediately after received machine. Besides, you will be CZPT to get free training advice towards our machine in our factory. You will also get free suggestion and consultation, technical support and service by email/WhatsApp/tel etc.

FAQ

Q: There are so many machine types, which 1 should I choose?
A: Kahan Laser provides machine parameters in each product demo page, please kindly check technical data column. It is important to compare all data before choose the best prototype. Also, our sales team provides online services to resolve your confusion, feel free to contact us.

Q:This is my first time buying your machine; I have no ideas about Kahan’s machines quality?
A: Each machine is strictly produced based on the standard of ISO9000-2000, ISO14001-2004, GMC global manufacturer and CE certifications. Our products have CE certifications verified by TÜV SÜD, Bureau Veritas and etc. As china high-power laser cutting machine provider, more than 10,000 machines have been sold in the past 10 years. Customer is our first priority. We are confident to tell customers that there is no need to worry about our quality.

Q: When I got this machine, but I don’t know how to use it. What should I do?
A:There are videos and English manual with the machine. If you still have some doubts, we can talk by telephone or email.

Q: If some problems happen to this machine during warranty period, what should I do?
A: We will supply free parts during machine warranty period if machine have some problems. While we also supply free life long after-sales service. If you have any question,just contact us freely.

 

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China wholesaler CNC Metal Cutting Fiber Laser Engraving Machine   near me shop China wholesaler CNC Metal Cutting Fiber Laser Engraving Machine   near me shop

China Professional Hot Sale 1325 CNC Router Machine Engraving Machine CZPT Router Machine for Marble Wood Acrylic near me factory

Product Description

Hot sale 1325 CNC Router Machine Engraving Machine CZPT Router Machine for Marble Wood Acrylic

1. Features: 

1.Lathe bed is of high quality by cast steel, after re-treatment, much stronger and more stable.
2.High-power water-cooled frequency spindle, high power, high precision.
3.Square linear guide, rigid, fast, smooth operation.
4.Applicable to all types of CZPT machine marble, granite, glass, tile, tombstones and metal processing.
5.The advanced professional control system compatible with many instruction format, may achieve process function in interruption 
of power supply, breakpoint and next day which is more convenient and save labor. 

2. Applications:

Industry: mainly used for granite, marble slabs, white marble and other CZPT carving patterns, such as text pattern. 
Applicable materials: CZPT and non-metallic materials
 

3.Technical parameters of CZPT CNC Router
 

Product name low cost 1325 3 axis CZPT cnc router for marble carving
X,Y,Z Working Area  1300x2500x500mm
X,Y,Z Repositioning Accuracy ±0.05mm
Table Surface  T-slot Table and Water Tank
Frame      Welded structure
X, Y axis transmission    Rack and Pinion gear
Z transmission       Ball Screw 
Rail Configuration   ZheJiang HIWIN 25 square rail 
Max. Traveling Rate   25000mm/min
Max. Working Speed   15000mm/min
Spindle Power   Water cooling 5.5KW(7.5KW is optional)
Spindle Speed   24000RPM
Drive Motors   Leadshine Stepper System  (Optional Yaskawa/ CZPT Servo motors)
Working Voltage  AC380V/50Hz/3PH 
Command Language  G Code
Operating System Nc studio System (Optional:DSP,mach 3 )
Computer Interface  USB
Software Compatibility  Type3, UCANCAM 
Packing Size  Strong Plywood Case
N.W.    2000Kg

4.Details of Marble Engraving and Cutting machine

Rotary Device  optional. A rotary device includes a fixed body and a shaft. as 4th axis of CNC
router, it could work instead of X or Y axis for column Processing, such as chair jamb, stair jamb,
roman column, pillar etc. the column diameter it fixes could be from 10mm to 400mm, material
could be wood, marble, foam etc.

5.Samples:

6.Feedback from Our clients:


7.Packaging & Shipping
 

1. UNISTAR Machine and accessories are first covered by plastic sheet, water-proof and dampproof. 
2. All the things are packed by plywood case used for export. 
3. UNISTAR CNC machine Can be delivered by sea, by train, or by plane according to your designated.
 


8.Services of our CZPT Marble CNC Router

Guarantee:
2 year warranty for the whole machine. Within 12 months under normal use and maintenance, if
something is wrong with the machine, you will get spare part for free. Out of 12 months, you will get
spare parts at cost price. You will also get technical support and service all the lifetime.

Technical support:
1. Technical support by phone, email or WhatsApp/Skype around the clock
2. Friendly English version manual and operation video CD disk
3. Engineer available to service machinery overseas

After sales services:
Normal machine is properly adjusted before dispatch. You will be CZPT to use the machine
immediately after received machine.
Besides, you will be CZPT to get free training advice towards our machine in our factory. You will
also get free suggestion and consultation, technical support and service by email/WhatsApp/tel etc.

9.FAQ:

Q: How can I choose suitable machine?
A: Please communicate with us via inquiry or email, we can CZPT you. Please kindly tell us:
1) .What work table size you will need?
2).What work you will do?

Q: What’s your payment terms? Delivery time and MOQ?
A: We accpet T/T(bank transfer), L/C, Paypal, Western union etc. Usually we need 30% as deposit, balance paid before shipment.
Delivery Time: 3-5 days after payment
MOQ: 1set

Q: If I bought a machine, how could you make it safe while shipping.
A: We have a professtional package suitable for oversea transpotation. Machine will be fixed well in the case.

Q: What’s your quality control system?
A: All machines will be tested after finished. We have QC department response for this job. And we already got CE approved.

Q: If I don’t know how to use the machine, can you teach me?
A: 1) There is a DVD disc including machine user manual and software user manual c/w machine.
2) Online ( & phone)
3) Remote desktop software (Teamviewer)
4) Demo Video

Contact us

Lily
 
 
Website:unistarcnc
 

Axle Spindle Types and Installation

Are you looking for a new axle spindle for your vehicle? If so, you’ve come to the right place. Learn more about their types, functions, and installation. After reading this article, you’ll be well on your way to finding your new axle spindle. Axle spindles are essential to your vehicle. There are several types and each has unique characteristics. Here’s how to choose the best 1 for your car.

Dimensions

Axle spindle dimensions are crucial for safe wheel support. This component experiences significant stress and load during bearing mounting and must provide sufficient strength. The axle spindle can be hot-forged or shaped to include an integral shoulder. The shape of the bearing stop region must be abruptly transitioned from a straight to a curved configuration. Dimensions of axle spindle vary with different materials, manufacturing techniques, and applications.
The bearing surfaces of the axle spindle are 1.376 inches across, while the bearing spacer is 1.061 inch across. The axle spindle is 1.376 inches long and includes a cotter pin and nut. Typical axle spindle dimensions are listed below. Some axles may have additional components to reduce their weight, while others may not have any. The number of axles and bearings is also important to consider when determining the dimensions of the axle.
The outside shape of the axle spindle 40 is similar to that of the prior art spindle 10. The outer wheel bearing region 44 is cylindrical with a diameter D 1 and an inner wheel bearing region 46. An axially-separating transition region 48 separates the inner bearing region 46 from the outer wheel bearing region 44. It is important to note that the internal diameter is generally slightly larger than the outer wheel bearing region 46.
Axle spindles can be integrally formed or welded to the housing or central beam. They can also be designed differently depending on the intended function. For example, the trailer axle spindle may have a circular or rectangular cross section. Once again, axle spindles are important for safety and longevity, so it is important to know their dimensions. You can also check online for the dimensions of axle spindles.
Driveshaft

Function

Axle spindles are crucial components of a vehicle’s suspension system. They enable a vehicle to move forward, turn, brake, and accelerate. The axle also supports the wheel bearings. In addition to supporting the wheel hub, the axle spindle connects the arms of each wheel to the chassis. This piece is also known as a steering knuckle. The axle spindle’s job is to provide sufficient strength to support the axle.
The functional elements of an axle spindle are cylindrical and have a transition region and an outer surface with an irregular pattern. They have a first and a second diameter, and are shaped to form the spindle’s beam portion and spindle region. The transition region forms a pivotal connection between the axle and the suspension. It also provides the connection between the axle and the trailer. It allows a vehicle to rotate without causing excessive vibrations.
Axle spindles can be circular in structure and are similar to those of the prior art. They support wheel hub configurations. The first end of a spindle is threaded, while the second end is open. The outer wheel bearing region has an outer surface with a diameter D1, while the inner wheel bearing region 46 has a cylindrical outer surface with a diameter D2. The transition region separates the spindle from the rest of the axle.
The spindle nut retains the wheel hub on the spindle, whereas the spindle nut holds the hub assembly in place. A spindle nut retains the wheel on the spindle. A hub cap protects the locking nut assembly and lubrication area. A hub cap is also a common component of the axle. The hub cap also provides a protective shield for the spindle nut.
Steering axle spindles do not extend to the right of the oil seal. They extend from the steering kunckle, which is pivotally joined to the steering axle beam. Despite the differences in bearing seals, wheel hub mounting means, and brake assemblies, the basic spindle configuration is the same. A spindle consists of 2 axially separated bearing regions, 1 with a larger diameter than the other, with a bearing stop adjacent to the inner bearing region.
Driveshaft

Types

The axle is the basic unit of an automobile, and it includes several components. Among these are bearings, axle housings, and wheel hubs. Bearings and axle housings take on all of the radial loads placed on them during operation. As a result, they are necessary to ensure that a vehicle is able to function at its optimum level. But if you’re not sure what these components are, they can make all the difference in your ride.
Axle type depends on a number of factors, including the amount of force produced. In some cases, the vehicle already has pre-designed axles that come in standard formats, but in other cases, a customer can order a custom-made axle for the specific needs of his vehicle. Customized axles give the vehicle operator greater control over the speed and torque of the wheels. To choose the correct axle type for your vehicle, it’s helpful to know the measurements of the axle.
Axle gear sets and lubrication passages are also different. Reverse-cut gears can’t be used in place of standard cut gears, and vice-versa. The 2 types of axle are compatible, but the spline count of the differential case must match that of the axle. It’s important to remember that a different type of axle may work with a different type of machine tool.
Different axle spindle materials have their own advantages and disadvantages. Some are more durable than others, depending on their load capacity. Disc brake hubs and axle spindles are similar to the non-braking ones, but include a rotor and a caliper yoke. The yoke design on the rotor or caliper spindle is specific for each rotor.
Bearing-type axles are the most durable. They transfer the weight of the vehicle to the axle casing. The axle housing is retained by a flange bolted to the hub, and the axle bearings are secured on the spindle by a large nut. Alternatively, axles with bearings are supported solely on the axle spindle and don’t require a hub. Floating axles are typically better for long-term operation, but may be a limited choice for vehicles.
Driveshaft

Installation

Axle spindle installation involves tightening the axle spindle nut to retain the spacer and bearing cones in position. When properly tightened, the axle spindle nut provides the clamp force required to compress the bearing spacer and bearing cone. Preloading is an important part of axle spindle installation because it optimizes bearing life by limiting the tolerance range of end play. Here are some tips on axle spindle installation.
To start the process, you should remove the axle spindle from the vehicle. If the old spindle is not a bolt-on type, a technician will need to cut the weld that holds the axle spindle in place. Then, he or she would need to thread the new spindle back into place. The axle tube must be threaded to accept the new spindle. Once the axle spindle is properly installed, the technician will need to tighten it to the specified torque.
Once the axle spindle is installed, the technician will continue tightening the nut assembly. To ensure a tight grip, the technician will rotate the outer washer while adjusting the torque level on the axle spindle nut. If the nut is not correctly torqued, it may loosen the axle spindle. In addition, improper torque can cause excessive inboard pressure on the outer nut, which can result in over or under-compression of the bearing cone.
The second axle spindle includes an inboard bearing 54 and an outboard bearing 56. The inboard bearing has an inboard surface that abuts the shoulder 26 of the axle spindle. The outboard bearing 57 is mounted on the axle spindle near its outboard end. A bearing spacer 58 is positioned between the inboard and outboard bearings. The spacer and bearing cone group comprises the bearing cones 54 and 56.
Proper alignment of the new spindle is essential for a secure fit. Taking your trailer to a licensed repair facility for a trailer spindle installation is a good idea, as a poorly installed axle can result in improper wheel tracking and premature tire wear. A licensed trailer repair facility can do this for you without much difficulty. This way, you won’t waste your time or frustration on a DIY trailer axle replacement.

China Professional Hot Sale 1325 CNC Router Machine Engraving Machine CZPT Router Machine for Marble Wood Acrylic   near me factory China Professional Hot Sale 1325 CNC Router Machine Engraving Machine CZPT Router Machine for Marble Wood Acrylic   near me factory

China factory 1325 CNC Engraving Machine Wood CNC Router near me factory

Product Description

1325 CNC Engraving Machine Wood CNC Router
 

This is 1 type of wood working machine of HangZhou Firm CNC Equipment Co.,Ltd. this machine working size is: 1300x2500x200mm, has the T-solt, using the material holders to fasten the CZPT on the table. It can work on the MDF, wood to make the cabinet door, soild wooden door, computer desk, assembling desk , it also can engrave on the HDF,wood board, acrylic ,plan cutting, 3D embossment ..
 
3.0KW Chinese water cooling spindle, we aslo have the CZPT air cooling spindle. as your choice. XY gear transmission, Z ZheJiang ball screw transmission. DSP control system, CZPT stepper motor, or Servo motor driving system, Xihu (West Lake) Dis. inverter.
Welcome to contact us when you need wood working machines on the wooden , MDF doors or the furniture….
We can according to your requipments to produce the wood cnc router machine, like the working size, the colour of this machine, using which size of driving motor…. so don’t hesitate to contact us !
 
Features

1. Robust square steel machinery body, stiff not deforming and tempering aging treatment, reasonable & advanced welding procedure, ensure stability of machine.
2. The special instruments to eliminate welding stress, high precision machining planer ensure the precision and no deformation.
3. The major machine body makes stability and no shacking high speed.
4. XYZ all apply imported screw, high precision gear frame and linear square guide, ensure the high accuracy.
5. The professional mechanical design, scientific a structure and generous appearance, gantry height 200MM can ensure Z axis working size…
6. High quality drive motors, spindle motors, cables inverters, etc.
7. Professional CNC control system, can compatible with many kinds CAM software, such as: TYPE3/ARTCAM/UG/PRO-E/MASTERCAM.
8. The advanced professional control system compatible with many instructions formats, may achieve process function in interruption of power supply, breakpoint and next day which is more convenient and save labor.
9. We can produce the machine as your requirements.

 Technical Parameters                                           

  FM-1325
Working area X axis 1300mm
  Y axis 2500mm
  Z axis 200mm
Process precision ± 0.05mm
Reposition precision ± 0.05mm
Table structure Section aluminum(Vacuum suction or bar suction)
X,Y,Z structure X, y rack, z screw
Idle speed ≥ 32000mm/min
Working speed ≥ 15000mm/min
Spindle rate 1.5kw/2.2kw/3.5kw/4.5kw
Spindle speed 0-24000rpm/min
Motor type stepper/servo
Working voltage AC380V/50HZ   AV220/50HZ
Operating system DSP or NC studio system

Wood cnc machine application:

1. The advertising industry

wood cnc machine can engrave all kinds of signage, trademark, nameplates, badge, decorative gift, embossed medal, certificate, souvenir, photo frame, furniture decoration.

2. woodworking industry

wood cnc machine can be used for solid wood furniture, mahogany furniture, MDF paint door, solid wood door, omposite door, cupboard door and window, bedside cabinet, folding screen etc.

3. Artwork industry

wood cnc machine can process wooden craft, mural art of wood, artwork embossed, jewelery, cosmetics package, musical instrument.

4. Soft metal processing

wood cnc machine can process aluminum front panel, pop can, aluminum honeycomb panel, train car and aircraft interior decoration, bronze medal, copper mold.

5. Electronic industry

wood cnc machine can engrave electronic component, integrated circuit, electronic plastic case, electronic product model, circuit board, electronic light box, computer and mobile phone keyboard, engraving a varity of electronic products.

Wood cnc machine Packaging and Shipping

Water-proof plastic film package with foam protection in each corner.
Solid Seaworthy Wood Box Package with Steel Belt.
Save space as much as possible for container loading.

Our Company

HangZhou Firm CNC Equipment Co., Ltd is situated in HangZhou city, ZheJiang province. We are a professional and good reputation manufacturer of CNC router (router cnc, cnc wood router), laser engraving machine, CNC plasma cutter, laser cutting machine, laser marking machine in China to the new and existing customers that are spread throughout the South America, Middle East, Southeast Asia, Africa, Europe and other counties of the world and the machines has passed the EU CE certificate
The aim of HangZhou Firm CNC Router is to continuously upgrade the technique, to help our customers produce the best quality and high precision products.

FAQ

Question 1:How long about the machine’s guarantee ?
Answer :1 year
Question 2:How about your after service ?
Answer :Technical support by phone, e-mail or MSN around the clock.
Question 3: How can we install the machine?
Answer :Friendly English version manual and operation video CD disk.
Question 4: How about the payment terms?
Answer:30% T/T for deposit, 70%T/T paid before shipping. 
T/T, West Union, Paypal
Question 5: Do You Arrange Shipment For The Machines?

Axle Spindle Types and Features

The axle spindle is an integral part of your vehicle’s suspension. There are several different types and features, including mounting methods, bearings, and functions. Read on for some basic information on axle spindles. The next part of the article will cover how to choose the correct axle spindle for your vehicle. This article will also discuss the different types of spindles available, including the differences between the rear and front bearings.
Driveshaft

Features

The improved axle spindle nut assembly is capable of providing additional performance benefits, including increased tire life and reduced seal failure. Its keyway features and radially inwardly extending teeth allow nut adjustment to be accomplished with precision. The invention further provides a unique, multi-piece locking mechanism that minimizes leakage and torque transfer. Its principles and features are detailed in the appended claims. For example, the improved axle spindle nut assembly is designed for use in vehicles that are equipped with a steering system.
The axle spindle nut assembly includes a nut 252 with threads 256 on its inner periphery. The axle spindle 50 also features threads 198 on its outer periphery. The nut is threaded onto the outboard end of the axle spindle 50 until it contacts the inboard surface of the axle spacer 26. In the assembled state, a bearing spacer 58 is also present on the axle spindle.
The axle spindle nut assembly can reduce axial end play between the wheel end assembly 52 and the axle spindle 50. It can be tightened to an extreme torque level, but if the thread faces separate, it will undercompress the bearing cone and spacer group. To minimize these disadvantages, the axle spindle nut assembly is a critical component of a wheel-end assembly. There are several types of axle spindle nuts.
The third embodiment of the axle spindle nut assembly 300 comprises an inner washer 202, an outer washer 310, and at least 1 screw 320. The axle spindle nut assembly 300 secures and preloads bearing cones 55, 57. Unlike the first embodiment, the axle spindle nut assembly 300 uses the inner washer 202, which is optional in the third embodiment. The inner washer 202 and outer washer 310 are similar to those of the first embodiment.

Functions

An axle spindle is 1 of the most important components of a vehicle’s suspension system. The spindle retains the position of bearings and a spacer in an axle by providing clamp force. The inner nut of an axle spindle should be properly torqued to ensure a secure fit. A spindle nut is also responsible for compressing bearings and spacers. If any of these components are missing, the spindle will not work properly.
An axle spindle is used in rear wheel drive cars. It carries the weight of the vehicle on the axle casing and transfers the torque from the differential to the wheels. The axle spindle and hub are secured on the spindle by large nuts. The axle spindle is a vital component of rear wheel drive vehicles. Hence, it is essential to understand the functions of axle spindle. These components are responsible for the smooth operation of a vehicle’s suspension system.
Axle spindles can be mounted in 3 ways: in the typical axle assembly, the spindles are bolted onto the ends of the tubular axle, and the axle is suspended by springs. Short stub-axle mounting uses a torsion beam that flexes to provide a smooth ride. A second washer is used to prevent excessive rotation of the axle spindle.
Apart from being a crucial component of the suspension system, the spindles of the wheels are responsible for guiding the vehicle in a straight line. They are connected to the steering axis and are used in different types of suspension systems. European cars use a MacPherson Strut suspension system in which the spindle is connected to the arms in the front and rear of the suspension frame. The MacPherson strut allows the shock absorber housing to turn the wheel.
Driveshaft

Methods of mounting

Various methods of mounting axle spindle are available. In general, these methods involve forming a tubular blank of uniform cross section and thickness, and receiving the bearing assembly against it. The spindle is then secured using a collar, which also serves as a bearing stop. In some cases, additional features are used to provide greater security. Some of these features may not be suitable for all applications. But they are generally suitable.
Axle spindle forming is usually done by progressive steps using hollow punches. The metallic body of the punch has an inner work surface, which receives the axle blank. A mandrel is fixed within the work opening of the punch. The punch body’s work surface forges the spindle about the mandrel. The punch has 2 ends, a closed and an open one.
A wheeled vehicle axle assembly (10) includes a cylindrical housing member (12 a) and a plurality of spindle mounting flanges (30) secured on the housing member. The spindles (16) are firmly attached to the housing member by means of coupling members. The coupling members are configured to distribute the bending loads imposed on the spindle by the axle. It is important to note that the coupling members can be either threaded or screwed.
Traditionally, axle spindles were made from tubular blanks of irregular thickness. This method allowed for a gradual reduction in diameter and eliminated the need for extra metal within the spindle. Similarly, axles made by cold forming eliminate the need for additional metal in the spindle. In this way, the overall cost of manufacture is also reduced. The material used for manufacturing axles also determines the size and shape of the final product.
Driveshaft

Bearings

A nut 16 is used to retain the wheel bearings on axle spindle 12. The nut comprises several parts. The first portion includes a plurality of threads and a deformable second portion. The nut may be disposed on the inboard or outboard end of the axle spindle. This type of nut is typically secured to the axle spindle by a retaining nut.
The bearings are installed in the spindle to allow the wheel hub to rotate. While bearings are greased, they can dry out over time. Consequently, you may hear a loud clicking sound when turning your vehicle. Alternatively, you may notice grease on the edges of your tires. Bearing failure can cause severe damage to your axle spindle. If you notice any of these symptoms, you may need to replace the bearings on your axle spindle. Fortunately, you can purchase the necessary bearing parts at O’Reilly Auto Parts.
There are 3 ways to mount an axle spindle. A typical axle assembly has the spindles bolted to the ends of the tubular axle. A torsion beam is also used to mount the spindles on the axle. This torsion beam acts like a spring to help make the ride smooth and bump-free. Lastly, the axle spindle is sometimes mounted as a bolt-on component.

Cost

If your axle spindle has been damaged, you may need to have it replaced. This part of the axle is relatively easy to replace, but you need to know how to do it correctly. To replace your axle spindle, you must first remove the damaged one. To do this, a technician will cut the weld. They will then thread the new 1 into the axle tube and torque it to specification. After that, they will weld the new axle spindle into place.
When you are thinking about the cost of an axle spindle replacement, you must first determine if it is worth it for your vehicle. It is generally a good idea to replace the spindle only if it is causing damage to your vehicle. You can also replace your axle housing if it is deteriorating. If you do not replace the spindle, you can risk damaging the axle housing. To save money, you can consider using a repair kit.
You can also purchase an axle nut socket set. Most wrenches have an adjusting socket for this purpose. The socket set should be suitable for most vehicle types. Axle spindle replacement costs around $500 to $600 before tax. However, you should be aware that these costs vary widely based on the type of vehicle you have. The parts can cost between $430 and $480, and the labor can cost anywhere from $50 to 70.

China factory 1325 CNC Engraving Machine Wood CNC Router   near me factory China factory 1325 CNC Engraving Machine Wood CNC Router   near me factory

China OEM Ce 1325 Wooden Furniture Machine Engraving Cutting 3D Woodworking CZPT CNC Router with high quality

Product Description

Ruijie Acrylic Letter Cutting Machine with CZPT for Engraving Acrylic and Wood

 

Features

*Adopts thick steel pipe welded lathe bed, the special heat-treatment ensures minimum distortion, excellent rigidity and vigorous strength.
* High precision TBI Gridding Grade ball screw transmission and Japan YASKAWA servo system ensures high accuracy, fast speed and good stability.
* 5.5KW water cooling spindle. Korea imported tool shank ensures the spindle proformance.
* Original NC Studio control system with hand wheel, convenient for positioning operation.
* Sprayer lubrication system and automatic lubrication system optional.

Techanical parameters

MODEL RJ-1325M
Processing size (X*Y*Z) 1300*2500*200mm
Spindle power 3.0KW/4.5KW/5.5KW with water-cooling
Spindle speeding 18000-24000 rpm/min
Control System NC Studio            
Motor and driver Japan YASKAWA Servo motor
Working table Double layer Vacuum Absorption system
Xihu (West Lake) Dis. Rail  Square Rail and Ball Screw
  Tool Magazine and Tools NO. Circular tool magazine,8 tools

Applications

Mainly uesd for acrylic mini letter and panel cutting.

Packaging and shipping

Packaging: CNC ROUTER will be packed by 2 layers. First the plastic air bubble wrap the machine, protect the Laser Cutting Machine from be scratched or other unexpected damage, the wrapped product will be packed in plywood case.

Shipping: HangZhou, ZheJiang , HangZhou, HangZhou,etc. We accept land, air, sea transport and international multimodal transport.  land, air, sea transport and international multimodal transport.  

 

♦We have 20-years professional focused on laser cutting machine and service more than 150 countries and areas.

♦Our company has set up more than 20 sale and service departments around China which can offer our customers the service of design, fixing, training, maintenance and so on.

♦As the sale in China, our products exports around the world including Southeast, Middle East, Africa, European and U.S.A. We are searching the distributors around the world. Hope we can cooperate for the world market.
 

 

Our Service 
1.24 months quality guaranty, the machine with main parts(excluding the consumables)shall be changed free of charge if there is any problem during the warranty period.

2.Lifetime maintenance free of charge.
3.Free training course at our plant.
4.We will provide the consumable parts at an agency price when you need replacement.

5.24 hours on line service each day, free technical support.
6.Machine has been adjusted before delivery.
7.Our staff can be sent to your company to install or adjust if necessary.

FAQ
Q1,How long is the warranty time of the machine?
A1:1 year.

Q2,What is the delivery time of the machine?
A2:17 working days after receive the deposit.

Q3,Does the company provide OEM services?
A3:Yes, Our Company provide OEM services and we have 17 years experienced.

Q4,Do you accept an exclusive national sales agent?
A4:We accept and we are also looking for distributors around the world.

Q5,How to provide after sales service?
A5:When you buy our machine, we can train you for free in our factory or we can send engineer to your factory give you a 7 days training, so you can quickly put the carver into service. The training included: to Learn the basic operation engraving machine, to understand the use of various functions of carving machine, to maintain normal running of the engraving machine operation. We can provide 1 year free on-site maintenance service and long-term maintenance service.

Q6,How to transport and how long is the transportation time?
A6:Ocean Shipping, Air Shipping, Courier Shipping.

Contact ways

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China OEM Ce 1325 Wooden Furniture Machine Engraving Cutting 3D Woodworking CZPT CNC Router   with high qualityChina OEM Ce 1325 Wooden Furniture Machine Engraving Cutting 3D Woodworking CZPT CNC Router   with high quality