Tag Archives: machine cutting

China Good quality 110mm Blade Servo Direct Drive Cutting Machine for Cloth with Hot selling

Product Description

Main Features:
Powerful Servo Motor:High torque, average comprehensive energy saving is over 80%.
Safe Cutting: Xihu (West Lake) Dis.nized design.
Low Noise: below 60dB.
Adjsutable Speed: 4 gears can be adjusted to meet different cutting requests.
LED Light: keep work in dark environment.
Automatic Grinding: The blade becomes sharp by 3seconds pressing.
HSS Blade: more durable than ordinary blade by 5 times. 
Light Weight: OnLy 1.1-1.3Kgs for different models.
Parameters:

Model Voltage Input Power Blade Size Cut Thickness Speed N.W
DWS-100
 
AC 220V±20% 3.6W-200W 100mm 27mm 800/1000/1200/1400 1.1Kg
 
AC 110V±20% 3.6W-200W 100mm 27mm 800/1000/1200/1400 1.1Kg
 
DWS-110
 
AC 220V±20% 3.6W-250W 110mm 32mm 800/1000/1200/1400 1.15Kg
 
AC 110V±20% 3.6W-250W 110mm 32mm 800/1000/1200/1400 1.15Kg
 
DWS-125
 
AC 220V±20% 3.6W-300W 125mm 40mm 800/1000/1200/1400 1.3Kg
 
AC 110V±20% 3.6W-300W 125mm 40mm 800/1000/1200/1400 1.3Kg
 
Inner Box(1pcs):31.5*21*13CM
Master Carton(10pcs):66*32*42.5CM

 Established in 2016. CZPT Technology is a professional manufacturer and exporter that is concerned with the design, development and production of cutting machine and sewing machine motor.We are located in HangZhou,ZHangZhoug with convenient transportation access and nice environment. All of our products comply with international quality standards and are greatly appreciated in a variety of different markets throughout the world.
Our factory havs over 210 employees, and we have a sales team with 10 persons.
90% of our main products are been currently exporting worldwide. Our well-equipped facilities and excellent quality control throughout all stages of production enables us to guarantee total customers’ satisfaction.
As a result of our high quality products and outstanding customer service, we have gained a global sales network reaching America,Canada,Austrilia,Japan,Romania,Pakistan,India ,south East Asia and so on. If you are interested in any of our products or would like to discuss a custom order, please feel free to contact with us. We are looking forward to forming successful business relationships with new clients around the world in the near future.
FAQ:
1)Q:
Can we use our own logo design?
  A:Yes, OEM and ODM are available in our factory,but MOQ is 500sets.Please send your request to our sales staff and specify the effect you want.

2)Q:How long is the sample lead time and is it free?
  A:For existing samples, it takes 2-3 days. If there are special specifications,the days it will take is based on the different products.
All the samples are chargebale,but it can be reducted from the following bulk orders.

3)Q:When is the delivery time?
  A:The production cycle of the minimum order quantity is 7-30 days. The specific time will be decided according to the quantity and requests.

4)Q:What is your terms of payment ?
  A:Amount≤USD10,000,100% in advance.
Amount≥USD10,000,we accept 30% deposit, and 70% balance before delivery.

5)Q:Do you have any stock?
  A:Yes, we have a small quantity in stock in off season.Pls try to avoid urgent orders,as the factory is busy nearly all through the year.

6)Q:How many colors are available?
  A:We have the colors as the pictures show,if you want other colors,it is available if the quantity reaches to 500sets.

7)Q:Can we use our own packing design?
  A:Yes, you can. Confirm all with the sales.

8)Q:Will you check the products before delivery?
 A:We manufacture 100% new products. Testing before packing,spot-checking before shipment are normal processes.

9)Q:Your ports of shipment?
  A: HangZhou and ZheJiang port.

10)Q:How can I arrive to your factory?
A: Our factory is located in HangZhou city, ZHangZhoug province,China.
HangZhou airport is the nearest airport,or you can come by train directly. We warmly welcome clients to come for visit and cooperation.

 

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China Good quality 110mm Blade Servo Direct Drive Cutting Machine for Cloth   with Hot sellingChina Good quality 110mm Blade Servo Direct Drive Cutting Machine for Cloth   with Hot selling

China supplier CZPT Aquatic Weed Cutting Harvesting Machine for Water Treatment with high quality

Product Description

Julong Aquatic Weed Cutting Machine for Water Treatment

 

Product Description:
Julong water hyacinth collecting ship is suitable for rivers and lakes to collect the floating debris, aquatic plants, water hyacinth, etc. It’s easy to operate and have a high efficiency and stable performance. One operator can complete the whole processes of collection, transmission, drainage, storage and discharge just by controlling the buttons and switches on the control desk

Technicla parameters 

Length Overall 12.8m Collecting Width 3m
Total Width 4.0m Displacement 12.8t
Total Depth 3.8m Loading Capacity 4t
Pontoon Length 7.5m Engine Power 50kw
Pontoon Depth 1.0m Designed Speed 7km/h
Pontoon Width 2.8m Working Speed 3km/h
Full Loaded Draft 0.65m Cruising Ability 24h
Empty Loaded Draft 0.45m Propelling Method Paddle Wheel
Collecting Depth 1.0m    

★ The parameter is just for reference, we can design and manufacture according to your requirements.

Product Show:

Our Features:

We will send engineers team to your working site after you get the goods, they will help to assemble the machine and commission and test it, also will train your operators how to use the machine. 
Our Company:


Julong Group focuses on the research, designing and manufacturing of various water engineering ships and platforms. We are a professional manufacturer and reliable service provider of dredging machines, water cleaning harvesters, mining machinery and sand processing machinery.
Our products have been exported to more than 50 countries and areas in Southeast Asia, East Asia, South Asia, South America, Oceania, Africa and East Europe. We have gained recognition and support from customers both at home and abroad.
Welcome to Julong!


Contact me

Any interesting in our harvesters,please feel free to contact me.

Welcome to CZPT !

What Are the Advantages of a Splined Shaft?

If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts

When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are 2 main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each 1 is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
splineshaft

They provide low noise, low wear and fatigue failure

The splines in a splined shaft are composed of 2 main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
splineshaft

They can be machined using a slotting or shaping machine

Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are 2 common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between 2 centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.

China supplier CZPT Aquatic Weed Cutting Harvesting Machine for Water Treatment   with high qualityChina supplier CZPT Aquatic Weed Cutting Harvesting Machine for Water Treatment   with high quality

China Best Sales Automatic Cutting Machine for Steel Rule Die Cutting with Hot selling

Product Description

 
 

Technical Parameters         Blade thickness(mm)
0.71 (VK_QX_A) 1.07(VK_QX_B)
Blade height(mm) 23-24mm 23-24mm
Maximum feeding speed 30m/min
Feeding Accuracy 0.03/300mm
Bridge Mode
  1. Automatic continuous Die Punch bridge, bridge height adjustable(15-18mm)Width(5-10mm) Gear Motor drive
Cutting Mode
  1. Automatic Die Punch cut(Automatic identification alarm and self Monitor)Gear Motor Driven Full Power
Rule Cassettes
  1. 2 Standard resistance -free rule cassettes
Function/Advantages
  1. Connect to the computer of automatic bender  machine without manual operation
  2. Intelligent cutting line program differential lengths of creasing line can be intelligently calculated according to differential over lap patterns,it is more convenience and time saving without manual operation. One key select lines by colour or layers.  Automatically break off and shrink.
  3. Cut the arc line.
  4. Multi tasks :several groups of Creasing Lines can be finished simultaneously with high speed and Bridging and cutting can be done at same times,as well as Bending Rules with Auto bender machine
Best Files format DXF,DWG,AL,CDR,PLT
Weight 230kg Size 1660*1150*1540
Power 110V 220V/50HZ 60HZ  500W
Air Pressure 0.6-0.8Mpa
Warranty 12 Month Mother Board Life Long Warranty

Traning service
Training: The training is free of charge.You just meed to pay for the around tickets,food and hotel.The whole training will cost 7 days.
 

  1. We will dispatch our technician to your company to install the machine and train your technicians, The whole training lessons are including the machine and software.
  2.  More ever we can Train You how to install the machine by Team viewer under our Engineers who is good at English and the machine.

 
Customized content
A.product range
Flat&rotary die board,cutting rules,creasing rules,creasing matrix,anvil cover,doctor blade,manual die making machine,auto-bender machine.
sample making machine,nick grinder,trash-cleaning machine,folding gluer machine and so on. We are the general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China.
B.our advantages
1.we are factory providing die making whole parts.
2.MOQ or NO MOQ
3.Delivery 7-30 days on time
4.Top quality guaranteed by skilled workers,managing system and status of facilities.
5.Advanced equipment.such as laser cutting machine,automatic bender machine.Sample making machine.etc.
6.Customized size and spec/OEM available
7.Near HangZhou and ZheJiang .convenient transpotation
8.With famous Grandcorp Brand and new YT brand
9.The general agent of Spanish polycut anvil cover and American Trupoint doctor blade in China
C.Better service
1.QC system 100% inspection before shipment
3.Packing standard package/pallet or container/As per customized

The picture for you reference 

                          

>>> Package & Shipping
Each machine is well packed with export standard wooden box.
We will make photos for the machine before the shipping and let you know the processing of the packing and loading.

>>> Our Services
1. Our machine is guaranteed for 1 year, not including normal consuming parts.
2. 24 hour technical support by email or calling -137-1262-4566.
3. User-friendly English manual and Video CD for machine using and maintaining.
4. Our self-developed English software can do all kinds of pattern recognition.
5. We supply 1 year warranty and 5 years engineering service.

>>> Please Let Us Know
1.what machine do you need?
2.what materials will be processed? The size and thickness?
3.what is your business scope? Are you end user or distributor?

Any more product information, please contact us !  Customer Needs is my Pursuit !

Axle Spindle Types and Installation

Are you looking for a new axle spindle for your vehicle? If so, you’ve come to the right place. Learn more about their types, functions, and installation. After reading this article, you’ll be well on your way to finding your new axle spindle. Axle spindles are essential to your vehicle. There are several types and each has unique characteristics. Here’s how to choose the best 1 for your car.

Dimensions

Axle spindle dimensions are crucial for safe wheel support. This component experiences significant stress and load during bearing mounting and must provide sufficient strength. The axle spindle can be hot-forged or shaped to include an integral shoulder. The shape of the bearing stop region must be abruptly transitioned from a straight to a curved configuration. Dimensions of axle spindle vary with different materials, manufacturing techniques, and applications.
The bearing surfaces of the axle spindle are 1.376 inches across, while the bearing spacer is 1.061 inch across. The axle spindle is 1.376 inches long and includes a cotter pin and nut. Typical axle spindle dimensions are listed below. Some axles may have additional components to reduce their weight, while others may not have any. The number of axles and bearings is also important to consider when determining the dimensions of the axle.
The outside shape of the axle spindle 40 is similar to that of the prior art spindle 10. The outer wheel bearing region 44 is cylindrical with a diameter D 1 and an inner wheel bearing region 46. An axially-separating transition region 48 separates the inner bearing region 46 from the outer wheel bearing region 44. It is important to note that the internal diameter is generally slightly larger than the outer wheel bearing region 46.
Axle spindles can be integrally formed or welded to the housing or central beam. They can also be designed differently depending on the intended function. For example, the trailer axle spindle may have a circular or rectangular cross section. Once again, axle spindles are important for safety and longevity, so it is important to know their dimensions. You can also check online for the dimensions of axle spindles.
Driveshaft

Function

Axle spindles are crucial components of a vehicle’s suspension system. They enable a vehicle to move forward, turn, brake, and accelerate. The axle also supports the wheel bearings. In addition to supporting the wheel hub, the axle spindle connects the arms of each wheel to the chassis. This piece is also known as a steering knuckle. The axle spindle’s job is to provide sufficient strength to support the axle.
The functional elements of an axle spindle are cylindrical and have a transition region and an outer surface with an irregular pattern. They have a first and a second diameter, and are shaped to form the spindle’s beam portion and spindle region. The transition region forms a pivotal connection between the axle and the suspension. It also provides the connection between the axle and the trailer. It allows a vehicle to rotate without causing excessive vibrations.
Axle spindles can be circular in structure and are similar to those of the prior art. They support wheel hub configurations. The first end of a spindle is threaded, while the second end is open. The outer wheel bearing region has an outer surface with a diameter D1, while the inner wheel bearing region 46 has a cylindrical outer surface with a diameter D2. The transition region separates the spindle from the rest of the axle.
The spindle nut retains the wheel hub on the spindle, whereas the spindle nut holds the hub assembly in place. A spindle nut retains the wheel on the spindle. A hub cap protects the locking nut assembly and lubrication area. A hub cap is also a common component of the axle. The hub cap also provides a protective shield for the spindle nut.
Steering axle spindles do not extend to the right of the oil seal. They extend from the steering kunckle, which is pivotally joined to the steering axle beam. Despite the differences in bearing seals, wheel hub mounting means, and brake assemblies, the basic spindle configuration is the same. A spindle consists of 2 axially separated bearing regions, 1 with a larger diameter than the other, with a bearing stop adjacent to the inner bearing region.
Driveshaft

Types

The axle is the basic unit of an automobile, and it includes several components. Among these are bearings, axle housings, and wheel hubs. Bearings and axle housings take on all of the radial loads placed on them during operation. As a result, they are necessary to ensure that a vehicle is able to function at its optimum level. But if you’re not sure what these components are, they can make all the difference in your ride.
Axle type depends on a number of factors, including the amount of force produced. In some cases, the vehicle already has pre-designed axles that come in standard formats, but in other cases, a customer can order a custom-made axle for the specific needs of his vehicle. Customized axles give the vehicle operator greater control over the speed and torque of the wheels. To choose the correct axle type for your vehicle, it’s helpful to know the measurements of the axle.
Axle gear sets and lubrication passages are also different. Reverse-cut gears can’t be used in place of standard cut gears, and vice-versa. The 2 types of axle are compatible, but the spline count of the differential case must match that of the axle. It’s important to remember that a different type of axle may work with a different type of machine tool.
Different axle spindle materials have their own advantages and disadvantages. Some are more durable than others, depending on their load capacity. Disc brake hubs and axle spindles are similar to the non-braking ones, but include a rotor and a caliper yoke. The yoke design on the rotor or caliper spindle is specific for each rotor.
Bearing-type axles are the most durable. They transfer the weight of the vehicle to the axle casing. The axle housing is retained by a flange bolted to the hub, and the axle bearings are secured on the spindle by a large nut. Alternatively, axles with bearings are supported solely on the axle spindle and don’t require a hub. Floating axles are typically better for long-term operation, but may be a limited choice for vehicles.
Driveshaft

Installation

Axle spindle installation involves tightening the axle spindle nut to retain the spacer and bearing cones in position. When properly tightened, the axle spindle nut provides the clamp force required to compress the bearing spacer and bearing cone. Preloading is an important part of axle spindle installation because it optimizes bearing life by limiting the tolerance range of end play. Here are some tips on axle spindle installation.
To start the process, you should remove the axle spindle from the vehicle. If the old spindle is not a bolt-on type, a technician will need to cut the weld that holds the axle spindle in place. Then, he or she would need to thread the new spindle back into place. The axle tube must be threaded to accept the new spindle. Once the axle spindle is properly installed, the technician will need to tighten it to the specified torque.
Once the axle spindle is installed, the technician will continue tightening the nut assembly. To ensure a tight grip, the technician will rotate the outer washer while adjusting the torque level on the axle spindle nut. If the nut is not correctly torqued, it may loosen the axle spindle. In addition, improper torque can cause excessive inboard pressure on the outer nut, which can result in over or under-compression of the bearing cone.
The second axle spindle includes an inboard bearing 54 and an outboard bearing 56. The inboard bearing has an inboard surface that abuts the shoulder 26 of the axle spindle. The outboard bearing 57 is mounted on the axle spindle near its outboard end. A bearing spacer 58 is positioned between the inboard and outboard bearings. The spacer and bearing cone group comprises the bearing cones 54 and 56.
Proper alignment of the new spindle is essential for a secure fit. Taking your trailer to a licensed repair facility for a trailer spindle installation is a good idea, as a poorly installed axle can result in improper wheel tracking and premature tire wear. A licensed trailer repair facility can do this for you without much difficulty. This way, you won’t waste your time or frustration on a DIY trailer axle replacement.

China Best Sales Automatic Cutting Machine for Steel Rule Die Cutting   with Hot sellingChina Best Sales Automatic Cutting Machine for Steel Rule Die Cutting   with Hot selling

China OEM Door Handle Spindles CNC Wood Cutting Machine Woodworking CNC Router CNC Engraver with Free Design Custom

Product Description

Linear disk CZPT cnc router for Wooden Door Furnitures Cabinets engraving cutting drilling with automatic tool change air cooling spindle

1.) Working area: 1300*2500*200mm/1500x3000x200mm 
2.) ATC 9kw air cooling spindle
3.) LNC controller (Optional: Original ZheJiang Syntec controller)
4.) J CZPT servo motor(Optional: Japan Yaskawa)
5.) Xihu (West Lake) Dis. Inverter(Optional: ZheJiang Delta inverter)
6.) Omron limited switch from Japan
7.) ZheJiang LP square rail and TBI ball screw
8.) vacuum combination table
9.) 7.5kw vacuum pump
10.) Heavy duty structure
11.) 10/12/16 tool holders
12.) 35mm PVC sheet vacuum table
13.) Optional:drilling head with 4+5

Parameter:

Model USC1325/1530/2030 Disk CZPT CNC ROUTER
Working area 1300X2500X200mm/1500X3000X200mm
Spindle 9.0KW CZPT air-cooling spindle
Tool changer 10/12 straight tool changer
Control system LNC controller
Servo system Leadshine Servo motor and driver
Inverter Xihu (West Lake) Dis. inverter(Optional:ZheJiang Delta)
Xihu (West Lake) Dis. rail ZheJiang LP square 30 rails
Transmission X, Y high-precision gear and rack transmission,
Z ZheJiang TBI ball screw (25mm), Original nut from ZheJiang
Body Heavy duty body with 8mm thickness steel
Table structure Vacuum pump
Vacuum pump 7.5kw water vacuum pump
Dust collecting system Dual-drum 4.0kw dust collect
Lubricating system Automatic lubricating system
Limit switch Japan OMRON
Sensor Professional Tool sensor
Working accuracy 0.01mm
Repositioning accuracy 0.01mm
Spindle speed 0-24000RPM
Max. Rapid Travel Rate 4000mm/min
Voltage 3PH 380V 50HZ/60HZ power supply
Interface USB
Flash Memory/Command 128M( U Disk)/ G code/mmg/plt/
Collet ER25/ER30
Packing size 3520*2250*1990mm
Net weight/Gross weight 1600kg/1800kg
Design software Compatible with Type3/Artcam/Castmate/Pore/Corelerow/Wentai, etc.
Cable drag chain specific Cable,anti-jamming,anti-static;with high flexibility, long-term use without break
Packing Strong plywood case

                            USCAM Quality Control                                              
1. In the processing of production, our professional technical engineers inspect the processing to ensure the quality of products.
2. Every Machine must be tested before delivery for 8 hours , all of them are absolutely qualified.  
3. 24 months guarantee of the whole machine.  
4. Main parts(excluding the consumables) shall be changed free of charge if there is any problem during the warranty period. 
5. Lifetime maintenance free of charge.
 6. We will provide the consumable parts at an agency price when you need replacement. 
7. Machine has been adjusted before delivery. 
8. Our staff can be sent to your company to install or adjust if necessary. 

Application areas:
Three-dimensional wave board processing, cabinet doors, solid wood doors, craft wooden doors, paint-free doors, screens, craft window processing, shoe-shoes, game consoles and panels, mahjong tables,
computer tables and auxiliary processing of panel furniture products.
   

1. Standard plywood case, its compressive strength and bearing quality is better.

2. the board area is bit, the soil structure is good,  it is better in leakproofness and waterproof.

3. when importing, the plywood case is with fumigation-free, the procedure is simple.

4. Delivery Detail: within 7-15 days after received your payment 

                               After sale Service:                                                     

# 18 months guarantee of the whole machine, we will provide the consumable parts at an agency price when you need replacement.

# Main parts(excluding the consumables) shall be changed free of charge if there is any problem during the warranty period.

# Software is on update for free whole life.

# Our engineer could support you technology to your country if necessary.

# Our enginner could service on weekend even on vacation.

# Our engineer could train you in our factory for free.

# Our engineer could service you 24 hours online by Skype, yahoo, msn, QQ, or by cellphone.

# English manual and CD video for machine using and maintaining will send to you with the machine.

                                        FAQ                                                                     
Q: What’s the package?
A: We have 3 layers package. For the outside, we adopt wood craft case. In the middle, the machine is covered by foam, to protect the machine from shaking. For the inside layer, the machine is covered by thickening plastic bag for waterproof.

Q: Will the package damaged during transportation?
A: Our package is considerate all the damage factors and make it to be safe, and our shipping agent have full experienced in safe tranportation. We have exported to 180 countries worldwide. So please don’t worry, you will receive the parcel in good condition. 

Q: How to install and run the machine?
A: Our technician have installed the machine before shipping. For some small parts installation, we will send detail training video, user’s manual along with the machine. 95% customers can learn by themselves.

Q: How can I do if the machine goes wrong?
A: If confronted with such problems, please contact us asap and do not try fix the machine by yourself or someone else. We will response within 24 hours as quick as we can to solve it for you.

How to tell if your driveshaft needs replacing

What is the cause of the unbalanced drive shaft? Unstable U-joint? Your car may make clicking noises while driving. If you can hear it from both sides, it might be time to hand it over to the mechanic. If you’re not sure, read on to learn more. Fortunately, there are many ways to tell if your driveshaft needs replacing.

unbalanced

An unbalanced driveshaft can be the source of strange noises and vibrations in your vehicle. To fix this problem, you should contact a professional. You can try a number of things to fix it, including welding and adjusting the weight. The following are the most common methods. In addition to the methods above, you can use standardized weights to balance the driveshaft. These standardized weights are attached to the shaft by welders.
An unbalanced drive shaft typically produces lateral vibrations per revolution. This type of vibration is usually caused by a damaged shaft, missing counterweights, or a foreign object stuck on the drive shaft. On the other hand, torsional vibrations occur twice per revolution, and they are caused by shaft phase shifts. Finally, critical speed vibration occurs when the RPM of the drive shaft exceeds its rated capacity. If you suspect a driveshaft problem, check the following:
Manually adjusting the imbalance of a drive shaft is not the easiest task. To avoid the difficulty of manual balancing, you can choose to use standardized weights. These weights are fixed on the outer circumference of the drive shaft. The operator can manually position the weight on the shaft with special tools, or use a robot. However, manual balancers have many disadvantages.
air-compressor

unstable

When the angular velocity of the output shaft is not constant, it is unstable. The angular velocity of the output shaft is 0.004 at ph = 29.5 and 1.9 at t = 1.9. The angular velocity of the intermediate shaft is not a problem. But when it’s unstable, the torque applied to it is too much for the machine. It might be a good idea to check the tension on the shaft.
An unstable drive shaft can cause a lot of noise and mechanical vibration. It can lead to premature shaft fatigue failure. CZPT studies the effect of shaft vibration on the rotor bearing system. They investigated the effect of flex coupling misalignment on the vibration of the rotor bearing system. They assume that the vibrational response has 2 components: x and y. However, this approach has limited application in many situations.
Experimental results show that the presence of cracks in the output shaft may mask the unbalanced excitation characteristics. For example, the presence of superharmonic peaks on the spectrum is characteristic of cracks. The presence of cracks in the output shaft masks unbalanced excitation characteristics that cannot be detected in the transient response of the input shaft. Figure 8 shows that the frequency of the rotor increases at critical speed and decreases as the shaft passes the natural frequency.

Unreliable

If you’re having trouble driving your car, chances are you’ve run into an unreliable driveshaft. This type of drivetrain can cause the wheels to stick or not turn at all, and also limit the overall control of the car. Whatever the reason, these issues should be resolved as soon as possible. Here are some symptoms to look for when diagnosing a driveshaft fault. Let’s take a closer look.
The first symptom you may notice is an unreliable drive shaft. You may feel vibrations, or hear noises under the vehicle. Depending on the cause, it could be a broken joint or a broken shaft. The good news is that driveshaft repairs are generally relatively inexpensive and take less time than a complete drivetrain replacement. If you’re not sure what to do, CZPT has a guide to replacing the U-connector.
One of the most common signs of an unreliable driveshaft is clanging and vibration. These sounds can be caused by worn bushings, loose U-joints, or damaged center bearings. This can cause severe vibration and noise. You can also feel these vibrations through the steering wheel or the floor. An unreliable driveshaft is a symptom of a bigger problem.
air-compressor

Unreliable U-joints

A car with an unreliable U-joint on the drive shaft can be dangerous. A bad u-joint can prevent the vehicle from driving properly and may even cause you trouble. Unreliable u-joints are cheap to replace and you should try getting parts from quality manufacturers. Unreliable U-joints can cause the car to vibrate in the chassis or gear lever. This is a sure sign that your car has been neglected in maintenance.
Replacing a U-joint is not a complicated task, but it requires special tools and a lot of elbow grease. If you don’t have the right tools, or you’re unfamiliar with mechanical terminology, it’s best to seek the help of a mechanic. A professional mechanic will be able to accurately assess the problem and propose an appropriate solution. But if you don’t feel confident enough, you can replace your own U-connector by following a few simple steps.
To ensure the vehicle’s driveshaft is not damaged, check the U-joint for wear and lubrication. If the U-joint is worn, the metal parts are likely to rub against each other, causing wear. The sooner a problem is diagnosed, the faster it can be resolved. Also, the longer you wait, the more you lose on repairs.

damaged drive shaft

The driveshaft is the part of the vehicle that connects the wheels. If the driveshaft is damaged, the wheels may stop turning and the vehicle may slow down or stop moving completely. It bears the weight of the car itself as well as the load on the road. So even a slight bend or break in the drive shaft can have dire consequences. Even a piece of loose metal can become a lethal missile if dropped from a vehicle.
If you hear a screeching noise or growl from your vehicle when shifting gears, your driveshaft may be damaged. When this happens, damage to the u-joint and excessive slack in the drive shaft can result. These conditions can further damage the drivetrain, including the front half. You should replace the driveshaft as soon as you notice any symptoms. After replacing the driveshaft, you can start looking for signs of wear.
A knocking sound is a sign of damage to the drive shaft. If you hear this sound while driving, it may be due to worn couplings, damaged propshaft bearings, or damaged U-joints. In some cases, the knocking noise can even be caused by a damaged U-joint. When this happens, you may need to replace the entire driveshaft, requiring a new one.
air-compressor

Maintenance fees

The cost of repairing a driveshaft varies widely, depending on the type and cause of the problem. A new driveshaft costs between $300 and $1,300, including labor. Repairing a damaged driveshaft can cost anywhere from $200 to $300, depending on the time required and the type of parts required. Symptoms of a damaged driveshaft include unresponsiveness, vibration, chassis noise and a stationary car.
The first thing to consider when estimating the cost of repairing a driveshaft is the type of vehicle you have. Some vehicles have more than one, and the parts used to make them may not be compatible with other cars. Even if the same car has 2 driveshafts, the damaged ones will cost more. Fortunately, many auto repair shops offer free quotes to repair damaged driveshafts, but be aware that such work can be complicated and expensive.

China OEM Door Handle Spindles CNC Wood Cutting Machine Woodworking CNC Router CNC Engraver   with Free Design CustomChina OEM Door Handle Spindles CNC Wood Cutting Machine Woodworking CNC Router CNC Engraver   with Free Design Custom

China supplier Gantry CNC Auto Plasma /Gas Cutting Machine (ZLQ-9) with Great quality

Product Description

Lansun CNC Plasma/Flame Cutting Machine Carbon Steel Plate Flame Cutter Gentry 

Product Display:

Specification:

Cross Beam Length(X axis)4 4.0m(Can be lengthened according use’ s demand )
Longitudinal Rail Length(Y axis) 6.0m ( can be customized)
Effective Cutting Width (X axis) 3.2m
Effective Cutting Length (Y axis) 4.5m
Cutting Mode Flame only; Plasma only; Flame and Plasma
Drive Mode Bilateral-side
Drive Method Rack and pinion drive for X and Y axes
Flame Cutting Thickness 5-200mm
Plasma Cutting Thickness 1-60mm (according to the specification of plasma power source)
Cutting Speed Flame: 0-3500mm per minute; Plasma: 0-8000mm per minute
Moving Precision 0.01mm per step
Power Source (option) 220V 50Hz 500-1000W
Nesting Software (option) INTERGNPS, FASTCAM
Cutting Gas Acetylene, Propane
Plasma Gas Pressed air, Oxygen, N2
Automatic CZPT Height Controller(option) CHC600 Capacitive height controller for flame cutting
PHC330 Arc voltage height controller for plasma cutting

Detailed description:

Machine body structure

1.Steel hollow beam design ensures good heat dissipation without deformation;
2. Box weldment structure process tempering ensures excellent rigidity and intensity;
3. Double drive adopts symmetrical structure.

HEIGHT CONTROLLER
 

Multiple cutting torches can be configured. Both flame and plasma torches are optional to meet the needs of cutting different materials in a range of thickness.
Flame:Electric height adjusting system.
Plasma:Arc voltage height controller.

CNC System

 

1. 10.4 inch LCD display;
2. USB port support, figures display;
3. Indicator lights showing working condition;
4. Operation menu displayed instantly on monitor;
5. Easy figures programmed directly.
ZheJiang or ZheJiang or American Brand CNC system is oPtional

Drive Model Transmission

Japan AC servo motor 1.Rack and gear mesh transmission. High stability of walking 2.Gear box: SEW, high output torsion low noise.
Convenient maintenance 3.Horizontal CZPT transmit by steel belt.
4. These devices are durable and long life device.

XIHU (WEST LAKE) DIS. RAIL

Material :U71Mn
Intensity:No less than700N/mm²;
Loading capacity no less than = 10T(per meter),
Rail tensile strength no less than 883Mpa,
Compression strength no less than 1000T.
Process mode:High precision grinder.
Longitudinal rack accuracy :7grade
Pitch:CP6

 

Features:

Portable and lightweight cnc flame/oxy/gas cutting machine. This cutter adopts single drive and lineal guide. It is small bodily movement type, can be put upon the metal plate to be cut, needn’t fixed plant, operate easily.

 

Application:

It can cut mild steel (flame cutting) and high carbon steel, stainless steel, aluminum, copper and other non-ferrous metal (plasma cutting), etc, be widely applied in industries such as machinery, automobile, shipbuilding, petro-chemical, war industry, metallurgy, aerospace, boiler and pressure vessel, locomotive etc.

Cutting sample:

Certifications:CE&ISO 9001Certificate

Packaging & Shipping:

The main cabinet, auxiliary cabinet and cutting head have a packing box: 0.72m×0.68m×0.5m;
There is 1 packing box for the beam and CZPT rail: 3.37m×0.35m×0.3m (standard format);
A packing box for the header: 2.54m×0.3m×0.3m (standard format);


Our Factory:

FAQ:

 

1. Are you factory or foreign trade company?
We are over 17 years experienced manufacturers, large-scale production of CNC cutting machine.

2. Where is your factory located? How can I visit there?

Our factory is located in HangZhou, ZheJiang . We will meet you at airport or train station. Warmly welcome to visit us!

3. What’s the quality of your products?
We are very focused on the quality of the products, All spare parts of this machine come with best brand and best quality, after completing the installation we will test the machine for 48 hours. Our factory has gained CE, ISO9001 authentication.

4. What shall we do if don’t know how to operate your machine after bought from you?
We have detailed installation and operating instructions attached, also comes with video, it is very simple. We have telephone and email support at 24 hours a day.

5. What other things also need after we bought your machines?
(1) With flame cutting: oxygen and fuel gas.

(2) With plasma cutting: air compressor. Plasma power is purchased by us, so that we can debug online, and we all need very good plasma power to ensure quality.

6. What are your payment terms?
We support T/T, L/C, Western Union, Alibaba Trade Assurance and so on. Other ways can also be received after we both sides discussion and agreement.

Screws and Screw Shafts

A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.

Machined screw shaft

A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from 2 different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.
screwshaft

Ball screw nut

When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In 1 revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have 1 contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
screwshaft

Self-locking property of screw shaft

A self-locking screw is 1 that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but 1 of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
screwshaft

Materials used to manufacture screw shaft

Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
Shafts are typically produced using 3 steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require 2 heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding 2 components together.
There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.

China supplier Gantry CNC Auto Plasma /Gas Cutting Machine (ZLQ-9)   with Great qualityChina supplier Gantry CNC Auto Plasma /Gas Cutting Machine (ZLQ-9)   with Great quality

China supplier Cutting Machine Header Rice Reaper Beans Grass Corn Harvester near me manufacturer

Product Description

CHMC 4YZ-4WA model 200HP Corn and Maize Combine Harvester

 

 

Technical parameters:

Model

4YZ-4WA

Type

Wheel type

Wheel

2 drive wheel + 2 direction wheel

Function

Picker + peeling, produce “corn cob”

Model of engine

YC4A165-T300

Engine manufactory

YUCHAI

Power

200 hp

Engine speed

2300-2400 r/min

Harvester rows

4 rows

Cutting width

2300mm

Harvest efficiency

0.33~0.66 hm2/h

Total loss rate

≤4%

Breakage rate

≤1.0%

Impurity rate

≤1.5%

Peeling rate

≥90%

Oil consumption

≤20kg/hm²

Minimum corn cob height from field

300mm

Granary volume

2200L

NW

6571 Kgs

Size

6855×2582×3230 mm

 

 

Harvesting Process:                                                                                   

 

1.Using a straw crushing and returning device, can completely crush the corn straw and reduce the stubble height. 

 

2.Peeling device with special design, adopt soft peeling technology,5 sets peeling device,20 pcs rollers, metal and rubber rollers blended, this design makes peeling cleaner, reduces the rate of seed damage&loss.

 

3.Flexible harvesting ways,suitable for different row space and different planting structure, can harvest even not in rows.

 

4.Assembling shake sieve and seed recycling bins, can collect the fallen corn seed, reduce loss rate.

 

5.Short machine body, short front-back wheel distance, small turning radius, easy to turn around in the field.

 

6.Special cutter table, auger-type picking roller, forceful and quick to pull the corn stick into cutter table, not intertwine, not blocking.

 

7.Adopt a hydraulic side-dumping device, convenient for corn unloading.

 

8.Adopt closed, shock-absorbing, and big-sized glass cab, comfortable and clear visibility to drive.

 

9.Peeling device and CZPT elevator with an alarm system, first-time to warn the fault information.

 

10.Adopt a visual image system to monitor CZPT tank and reversing, convenient, clean, and safe.

 

11. Reserve a termination to connect the air conditioner or fan.

 

 

FAQ:                                                                                 

Q1.How long is the delivery date?

A: In general, we can ship the goods within 15 days after receiving your payment. Of course, it also depends on your quantity.

 

Q2. How can I visit your factory?

A: We are located in HangZhou city, middle of China, Airport&High-speed train, the transportation is very convenient

 

Q3: What are your main products?

A: Our products are covered rice&wheat combine harvester, corn harvester, and peanut harvester.

 

Q4. What are your terms of payment?

A: T/T, L/C, Paypal, Western Union

 

Q 5: How is the quality of the harvester?

A: We are an experienced manufacturer which has been in this field for 30 more years, and can supply high-quality harvesters for you.

 

 

After-Sales Service                                               

1. Training how to install and use the machine, engineers available to service machinery overseas.

 

2. Warranty period of 1 year since machine arrives destination port. Malfunctions which are caused by machine-self and quality will be responsible for our manufacturer. Other malfunctions caused by operation mistakes, man-made problems, etc will be responsible for clients-self.

 

3. Timely response to customers’ problems 7*24 hours provide in-time Feedback tracking and after-sales services to maximize the customer’s satisfaction.

 

Local Service at Users Farm                                   

 

Services Including:

 

– Agricultural technology consulting

– Combine harvester usage training

– Agricultural machinery sales services

– Agricultural machinery maintenance services

– Farm technology exchange meetings

– Farmers’ private technology exchange meetings

– Agricultural machinery sharing and leasing organizations

 

Contact Us                                                                

Mia Hou
Business Manager/International Dept.
 
 
HangZhou CZPT Harvest Machinery Co., Ltd
ADD: North of 310 national road, Xihu (West Lake) Dis. Town, HangZhou,
HangZhou City, ZheJiang province, China.P.O.455710
 

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are 3 main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join 2 heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new 1 or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China supplier Cutting Machine Header Rice Reaper Beans Grass Corn Harvester   near me manufacturer China supplier Cutting Machine Header Rice Reaper Beans Grass Corn Harvester   near me manufacturer

China Professional Cantilever CNC Plasma Cutting Machine (ZLQ-6) wholesaler

Product Description

Features
This cutter adopts small cantilever structure, single drive and lineal guide. It is small bodily movement type, needn’t fixed plant, operate easily.
Application
It can cut mild steel (flame cutting) and high carbon steel, stainless steel, aluminum, copper and other non-ferrous metal (plasma cutting), etc, be widely applied in industries such as machinery, automobile, shipbuilding, petro-chemical, war industry, metallurgy, aerospace, boiler and pressure vessel, locomotive etc.

Application:

It can cut mild steel (flame cutting) and high carbon steel, stainless steel, aluminum, copper and other non-ferrous metal (plasma cutting), etc, be widely applied in industries such as machinery, automobile, shipbuilding, petro-chemical, war industry, metallurgy, aerospace, boiler and pressure vessel, locomotive etc.
.
Specifications
1. The overall processing machine base, good stability, not deformed
2. Using beeline and double-slide lead rails, high accuracy
3. A detachable structural design for arm, convenient transportation and installation
4. Beautiful structure, coordination, light weight;
5. Machine base is made in steel.
6. The CNC control system has the following character:
1) High reliability, such as anti-plasma jamming, and lightning strike, Surge;
2) 32M users program storage capacity can update to 64M;
3) In both English and Chinese interface conversion;
4) During plasma processing, auto-complete the speed control of the corner
5) Rich software features and practical flame / plasma cutting process;
6) In particular small line section procedure processing can be widely used in metal materials and advertisement, Iron;
7) Dynamic graphics, zoom in 1-8X the graphics, fixed point of automatic tracking;
8) Using USB Flash Drive reading procedure and timely upgrade software;
9) Built-in the rich graphics, makes programming easy to learn.

Cross Beam Length(X axis) 2.5m
Longitudinal Rail Length(Y axis) 2.3m (Rail can be lengthened according to user’ s demand)
Effective Cutting Width (X axis) 2.0m
Effective Cutting Length (Y axis) 2.0m (Rail can be lengthened according to user’ s demand)
Cutting Mode Flame only; Plasma only; Flame and Plasma
Drive Mode Single-side
Drive Method Rack and pinion drive for X and Y axes
Flame Cutting Thickness 5-200mm
Plasma Cutting Thickness 0.1-60mm (according to the specification of plasma power source)
Cutting Speed 0-6500mm per minute
Moving Precision 0.01mm per step
Power Source (option) 220V 50Hz 500-1000W
Nesting Software (option) IBE, FASTCAM
Cutting Gas Acetylene, Propane
Plasma Gas Pressed air, Oxygen, N2
Marking Tool Yes
Torch Height Controller (AUTO) CHC600 Capacitive height control for flame cutting
PHC330 Arc voltage height control for plasma cutting

Cut Sample:

 Package Picture:

 
Our Factory:

Customer Visit:

CE&ISO Certificate:

FAQ:
1. Are you factory or foreign trade company?
We are over 17 years experienced manufacturers, large-scale production of CNC cutting machine.

2. Where is your factory located? How can I visit there? 
Our factory is located in HangZhou, ZheJiang . We will meet you at airport or train station. Warmly welcome to visit us! 

3. What’s the quality of your products? 
We are very focused on the quality of the products, All spare parts of this machine come with best brand and best quality, after completing the installation we will test the machine for 48 hours. Our factory has gained CE, ISO9001 authentication.

4. What shall we do if don’t know how to operate your machine after bought from you? 
We have detailed installation and operating instructions attached, also comes with video, it is very simple. We have telephone and email support at 24 hours a day.

5. What other things also need after we bought your machines? 
(1) With flame cutting: oxygen and fuel gas.
(2) With plasma cutting: air compressor. Plasma power is purchased by us, so that we can debug online, and we all need very good plasma power to ensure quality.

6. What are your payment terms? 
We support T/T, L/C, Western Union, Alibaba Trade Assurance and so on. Other ways can also be received after we both sides discussion and agreement.

Contact Me:
AlisonChen 
 

Types of Splines

There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
splineshaft

Involute splines

The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.

Parallel key splines

A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
splineshaft

Involute helical splines

Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.

Involute ball splines

When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
splineshaft

Keyed shafts

Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.

China Professional Cantilever CNC Plasma Cutting Machine (ZLQ-6)   wholesaler China Professional Cantilever CNC Plasma Cutting Machine (ZLQ-6)   wholesaler

China Good quality Dk7763z Aluminum Alloy Wire Cut Machine, Single Cutting Machine near me supplier

Product Description

Technique parameters
cnc wire cut edm

Technique parameters Unit DK7725Z DK7732Z DK7740Z DK7750Z DK7763Z
Table size  (WxD) mm 400×580 440×680 540×760 640×1571 750×1140
Table travel (XxY) mm 250×320 320×400 400×500 500×630 630×800
Table travel (UxV) mm 70×70
Z-axis control   manual control
Z-axis guideway   slide guides
Max. workpiece weight kg 400 600 1000 1600 2400
Thickness of workpiece mm 400 400 450 550
Max.taper angle   ±6°/80mm
Diameter of cutting wire mm φ0.15~φ0.20mm(recommendφ0.18mm)
Feeding speed m/sec 1~11.4m/sec  adjustable
Precision mm ≤0.015
Machining speed mm²/min >200
Surface roughness μm Ra≤2.5
Motor type   X,Y,U,V stepper motor
Control axis   4 axis simultaneous
Min. control pace mm 0.001
Power supply   3N-380V/50Hz
Max. working current A 12
Power consumption Kw 1
Working liquid   JA-1
Water tank L 55
Filtering mode   filter screen
Controller   DQE-DS-01/02/03
Machine weight kg 1100 1300 1600 2300 2700
Machine dimensions mm 1420×1040×1600 1550×1170×1700 1800×1380×1700 2060×1760×1850 2250×2250×1950

1. Optional two-axis or four-axis hybrid stepper motor
2. Two kinds of cabinet optional one
3. Cost-effective
4. Good accuracy and accuracy to maintain the characteristics
5. Excellent long-term fast cutting characteristics
6. Good cutting surface roughness
7.Very low molybdenum wire loss and power consumption
8. Very low wire broken rate

Company Information

Founded in 1958 and developed more than half a century, ZheJiang Xihu (West Lake) Dis.qing CNC Machine Tool CO. Ltd., has now became a forge ahead modern enterprise for production of CNC machine.
 
The R&D, production and marketing are the main component of the company. As shown on the website, the main product of the company covers 5 series, CNC milling machine & vertical machining center, CNC engraving machine, CNC wire cut EDM, Die sinking EDM and Micro hole drilling EDM.
 
The company has always engaged in improving the quality, function and performance of CNC machine in the past several years. It has successfully passed identification of ISO, CE, SGS, TUV & Bureau. “Innovation, development and CZPT situation” makes TOPSCNC enjoy high reputation in this line.
 
TOPSCNC people wish to share success with you in the future!

Our service
1) Quality : We take care of the product quality in order to provide good service to our customers.

2)Warranty: One year after shipment,consumables are not included.

3)The quotation do not include installation and education training fee.

4) Payment Method: T/T or L/C
T/T 30% with the order, the rest 70% of total amount T/T before shipment.

5) Delivery time : 18–25 days 

6) Packing : Standard export wooden cases 

7) Port: ZheJiang or any China port

FAQ

Q: Are you trading company or manufacturer ?

A: We are manufacturer.

Q. Could your engineers go to our factory to install the machine and train our workers?

A:Yes, our engineers could go to your factory and assist you.

Q:What is your warranty?

A:One year after shipment ,consumables are not included.

Q: What is your terms of payment ?

A:L/C or T/T before shipment.

Cantact us

Company: ZheJiang Xihu (West Lake) Dis.qing CNC Machine Tool Co. Ltd.
Address: East Suburb Development Zone, HangZhou city, ZheJiang Province, China
 
 
Web: topscnc  

 

How to Calculate the Diameter of a Worm Gear

worm shaft
In this article, we will discuss the characteristics of the Duplex, Single-throated, and Undercut worm gears and the analysis of worm shaft deflection. Besides that, we will explore how the diameter of a worm gear is calculated. If you have any doubt about the function of a worm gear, you can refer to the table below. Also, keep in mind that a worm gear has several important parameters which determine its working.

Duplex worm gear

A duplex worm gear set is distinguished by its ability to maintain precise angles and high gear ratios. The backlash of the gearing can be readjusted several times. The axial position of the worm shaft can be determined by adjusting screws on the housing cover. This feature allows for low backlash engagement of the worm tooth pitch with the worm gear. This feature is especially beneficial when backlash is a critical factor when selecting gears.
The standard worm gear shaft requires less lubrication than its dual counterpart. Worm gears are difficult to lubricate because they are sliding rather than rotating. They also have fewer moving parts and fewer points of failure. The disadvantage of a worm gear is that you cannot reverse the direction of power due to friction between the worm and the wheel. Because of this, they are best used in machines that operate at low speeds.
Worm wheels have teeth that form a helix. This helix produces axial thrust forces, depending on the hand of the helix and the direction of rotation. To handle these forces, the worms should be mounted securely using dowel pins, step shafts, and dowel pins. To prevent the worm from shifting, the worm wheel axis must be aligned with the center of the worm wheel’s face width.
The backlash of the CZPT duplex worm gear is adjustable. By shifting the worm axially, the section of the worm with the desired tooth thickness is in contact with the wheel. As a result, the backlash is adjustable. Worm gears are an excellent choice for rotary tables, high-precision reversing applications, and ultra-low-backlash gearboxes. Axial shift backlash is a major advantage of duplex worm gears, and this feature translates into a simple and fast assembly process.
When choosing a gear set, the size and lubrication process will be crucial. If you’re not careful, you might end up with a damaged gear or 1 with improper backlash. Luckily, there are some simple ways to maintain the proper tooth contact and backlash of your worm gears, ensuring long-term reliability and performance. As with any gear set, proper lubrication will ensure your worm gears last for years to come.
worm shaft

Single-throated worm gear

Worm gears mesh by sliding and rolling motions, but sliding contact dominates at high reduction ratios. Worm gears’ efficiency is limited by the friction and heat generated during sliding, so lubrication is necessary to maintain optimal efficiency. The worm and gear are usually made of dissimilar metals, such as phosphor-bronze or hardened steel. MC nylon, a synthetic engineering plastic, is often used for the shaft.
Worm gears are highly efficient in transmission of power and are adaptable to various types of machinery and devices. Their low output speed and high torque make them a popular choice for power transmission. A single-throated worm gear is easy to assemble and lock. A double-throated worm gear requires 2 shafts, 1 for each worm gear. Both styles are efficient in high-torque applications.
Worm gears are widely used in power transmission applications because of their low speed and compact design. A numerical model was developed to calculate the quasi-static load sharing between gears and mating surfaces. The influence coefficient method allows fast computing of the deformation of the gear surface and local contact of the mating surfaces. The resultant analysis shows that a single-throated worm gear can reduce the amount of energy required to drive an electric motor.
In addition to the wear caused by friction, a worm wheel can experience additional wear. Because the worm wheel is softer than the worm, most of the wear occurs on the wheel. In fact, the number of teeth on a worm wheel should not match its thread count. A single-throated worm gear shaft can increase the efficiency of a machine by as much as 35%. In addition, it can lower the cost of running.
A worm gear is used when the diametrical pitch of the worm wheel and worm gear are the same. If the diametrical pitch of both gears is the same, the 2 worms will mesh properly. In addition, the worm wheel and worm will be attached to each other with a set screw. This screw is inserted into the hub and then secured with a locknut.

Undercut worm gear

Undercut worm gears have a cylindrical shaft, and their teeth are shaped in an evolution-like pattern. Worms are made of a hardened cemented metal, 16MnCr5. The number of gear teeth is determined by the pressure angle at the zero gearing correction. The teeth are convex in normal and centre-line sections. The diameter of the worm is determined by the worm’s tangential profile, d1. Undercut worm gears are used when the number of teeth in the cylinder is large, and when the shaft is rigid enough to resist excessive load.
The center-line distance of the worm gears is the distance from the worm centre to the outer diameter. This distance affects the worm’s deflection and its safety. Enter a specific value for the bearing distance. Then, the software proposes a range of suitable solutions based on the number of teeth and the module. The table of solutions contains various options, and the selected variant is transferred to the main calculation.
A pressure-angle-angle-compensated worm can be manufactured using single-pointed lathe tools or end mills. The worm’s diameter and depth are influenced by the cutter used. In addition, the diameter of the grinding wheel determines the profile of the worm. If the worm is cut too deep, it will result in undercutting. Despite the undercutting risk, the design of worm gearing is flexible and allows considerable freedom.
The reduction ratio of a worm gear is massive. With only a little effort, the worm gear can significantly reduce speed and torque. In contrast, conventional gear sets need to make multiple reductions to get the same reduction level. Worm gears also have several disadvantages. Worm gears can’t reverse the direction of power because the friction between the worm and the wheel makes this impossible. The worm gear can’t reverse the direction of power, but the worm moves from 1 direction to another.
The process of undercutting is closely related to the profile of the worm. The worm’s profile will vary depending on the worm diameter, lead angle, and grinding wheel diameter. The worm’s profile will change if the generating process has removed material from the tooth base. A small undercut reduces tooth strength and reduces contact. For smaller gears, a minimum of 14-1/2degPA gears should be used.
worm shaft

Analysis of worm shaft deflection

To analyze the worm shaft deflection, we first derived its maximum deflection value. The deflection is calculated using the Euler-Bernoulli method and Timoshenko shear deformation. Then, we calculated the moment of inertia and the area of the transverse section using CAD software. In our analysis, we used the results of the test to compare the resulting parameters with the theoretical ones.
We can use the resulting centre-line distance and worm gear tooth profiles to calculate the required worm deflection. Using these values, we can use the worm gear deflection analysis to ensure the correct bearing size and worm gear teeth. Once we have these values, we can transfer them to the main calculation. Then, we can calculate the worm deflection and its safety. Then, we enter the values into the appropriate tables, and the resulting solutions are automatically transferred into the main calculation. However, we have to keep in mind that the deflection value will not be considered safe if it is larger than the worm gear’s outer diameter.
We use a four-stage process for investigating worm shaft deflection. We first apply the finite element method to compute the deflection and compare the simulation results with the experimentally tested worm shafts. Finally, we perform parameter studies with 15 worm gear toothings without considering the shaft geometry. This step is the first of 4 stages of the investigation. Once we have calculated the deflection, we can use the simulation results to determine the parameters needed to optimize the design.
Using a calculation system to calculate worm shaft deflection, we can determine the efficiency of worm gears. There are several parameters to optimize gearing efficiency, including material and geometry, and lubricant. In addition, we can reduce the bearing losses, which are caused by bearing failures. We can also identify the supporting method for the worm shafts in the options menu. The theoretical section provides further information.

China Good quality Dk7763z Aluminum Alloy Wire Cut Machine, Single Cutting Machine   near me supplier China Good quality Dk7763z Aluminum Alloy Wire Cut Machine, Single Cutting Machine   near me supplier

China supplier CNC High Efficiency EDM Wire Cutting Machine with Hot selling

Product Description

Technique parameters
                     

Technical parameter Unit DK7732ZG
Table size (W*D) mm 740×460
Table travel (X*Y) mm 320×400
Max.workpiece dimension mm 800×500
Table size(U*V) mm ±30×±30
Max. workpiece weight kg 600
Max. thickness of workpiece mm 300
Max. taper angle/workpiece thickness   ±6°/80mm
Molybdenum Dia. mm φ0.15~φ0.25mm
(φ0.18mm recommend)
Max. wire feed rate m/sec 1~11.4m/sec  frequency adjustable
Machining precision mm ≤0.01
Max. machining speed mm2/min ≥200
Surface roughness μm one time Ra≤2.5,three times Ra≤1.0
 five times Ra≤0.8
Linkage control axis number   X,Y,U,V
Max.trip wire cylinder m 250
Z-axis control   electronic control
Motor type   X,Y,U,V all servo motor
Axis controlled   4 axis simultaneous
Min. control pace mm 0.001
Power supply   380VAC/50Hz
Max. working current A 12
Power consumption Kw 1.5
Work liquid   JR3A
Water tank L 90
Filtering mode   Paper filter/Italy pump
Machine weight kg 2200
Machine dimension mm 1800×1300×2030
Size package mm 2000×1400×2400
The noise db ≤70

Company Information

Founded in 1958 and developed more than half a century, ZheJiang Xihu (West Lake) Dis.qing CNC Machine Tool CO. Ltd., has now became a forge ahead modern enterprise for production of CNC machine.
 
The R&D, production and marketing are the main component of the company. As shown on the website, the main product of the company covers 5 series, CNC milling machine & vertical machining center, CNC engraving machine, CNC wire cut EDM, Die sinking EDM and Micro hole drilling EDM. 
 
The company has always engaged in improving the quality, function and performance of CNC machine in the past several years. It has successfully passed identification of ISO, CE, SGS, TUV & Bureau. “Innovation, development and win-win situation” makes TOPSCNC enjoy high reputation in this line.
 
TOPSCNC people wish to share success with you in the future!
 
TOPSCNC Customer

Our service

1) Quality & Service : We are confident in our products .Please choose TOPSCNC, we’ll never let you down.

2) Price :Because we are factory,so you can get good products at the best price.

3 )Warranty: One year after shipment but consumables are not included.

FAQ

Q: Are you trading company or factory?

A: We are factory.

Q. Could your engineers go to our factory to install the machine and train our workers?

A:Yes, our engineers could go to your factory and assist you.

Q:What is your warranty?

A:One year after shipment ,consumables are not included.

Q: What is your terms of payment ?

A:L/C or T/T before shipment.

Contact us

Company: ZheJiang Xihu (West Lake) Dis.qing CNC Machine Tool Co. Ltd.
Address: East Suburb Development Zone, HangZhou city, ZheJiang Province, China
 
Web: topscnc  

Screws and Screw Shafts

A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.

Machined screw shaft

A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from 2 different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.
screwshaft

Ball screw nut

When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In 1 revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have 1 contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
screwshaft

Self-locking property of screw shaft

A self-locking screw is 1 that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but 1 of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
screwshaft

Materials used to manufacture screw shaft

Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
Shafts are typically produced using 3 steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require 2 heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding 2 components together.
There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.

China supplier CNC High Efficiency EDM Wire Cutting Machine   with Hot sellingChina supplier CNC High Efficiency EDM Wire Cutting Machine   with Hot selling

China wholesaler CNC Metal Cutting Fiber Laser Engraving Machine near me shop

Product Description

KH-4571 Fiber Laser Cutting Machine

Features:

1.The medium-power laser cutting machine with the highest precision in China, it can cut small metal bike design with size of half a coin.

2.Equipped with original japan imported servo motor and ZheJiang precise ball screw CZPT rail, highest speed up to 40m/min and accelerated speed up to 1 G, 120 holes can be cut within 1 minute.

3.Integrated machine accessories, fast disassembly, left and right drawers collecting saves space.

4.Professionally cutting 0.5-14mm carbon steel, 0.5-10mm stainless steel, galvanized steel, eletrogalvanized metal sheet, silicium steel and some other kinds of thin metal sheets.  (The laser brand can be customized, power optional from 500w-3000w )
 

SPECIFICATION OF KH-4571 FIBER LASER CUTTING MACHINE
Working area 2000 mm * 4000mm
Laser Power 500W/ 1000W/ 2000W/ 3000W
Laser Type Fiber laser, water-cooling
Laser wavelength 1080nm
Running speed 0-60m/min
CNC or Not CNC
Resetting Position Accuracy ≤±0.01mm
Control Software Cypcut, Weihong
Operating Temperature 0 – 40 ° C
Graphic format supported BMP, HPGL(PLT), JPEG, DXF,AI, DST
Transfer method Double drive rack and pinion
Drive modor Imported servo motor and servo drive
Applied material Carbon steel/SS and other metal plates
Warranty 2 Years
Packing Dimension 5200mm * 3100mm * 2000mm (L*W*H) 
Net Weight Approximately 3000 KG

 

Applicable materials for laser cutting machine for metal

Fiber Laser Cutting Equipment is suitable for metal cutting with Stainless Steel Sheet, Mild Steel Plate, Carbon Steel Sheet, Alloy Steel Plate, Spring Steel Sheet, Iron Plate, Galvanized Iron, Galvanized Sheet, Aluminum Plate, Copper Sheet, Brass Sheet, Bronze Plate, Gold Plate, Silver Plate, Titanium Plate, Metal Sheet, Metal Plate, Tubes and Pipes, etc.

Application Industries 

Fiber Laser Cutting Machine is widely used in manufacturing Billboard, Advertising, Signs, Signage, Metal Letters, LED Letters, Kitchen Ware, Advertising Letters, Sheet Metal Processing, Metals Components and Parts, Ironware, Chassis, Racks & Cabinets Processing, Metal Crafts, Metal Art Ware, Elevator Panel Cutting, Hardware, Auto Parts, Glasses Frame, Electronic Parts, Nameplates, etc.

Configuration:

Configuration for fiber metal laser cutting machine

4000*2000mm working area;

Raytools laser cutting head;

X,Y axis Japan YASKAWA/ CZPT servo motor;

Z axis Japan CZPT servo motor;

ZheJiang HIWIN guide rail;

ZheJiang YYC gear rack;

Japan SHIMPO reducer;  

ZheJiang TBI ball screw;

Japan /ZheJiang pneumatic components;

France Schneider electrical components;

Cypcut control system.

Application:

 

Packaging & Shipping

1. Kahan CNC machine and accessories are covered by plastic sheet first.
2. Then the whole machine is packed by plywood case used for export. 
3. Kahan CNC machine can be delivered by sea, by train, or by plane depending on customers.

 

Delivery Detail:

Shipped in 15-30 working days after payment.

Guarantee:

2 years warranty for the whole machine. Within 24 months under normal use and maintenance, if something is wrong with the machine, you will get spare part for free. After 24 months, you will get spare parts at cost price. You will also get technical support and service all the lifetime.

Technical support:

1. Technical support by phone, email or WhatsApp/Skype around the clock.
2. Friendly English version manual and operation video CD disk.
3. If needed, we can send our engineer to your site for training or you can send the operator to our factory for training.

After sales services: 

Normal machine is properly adjusted before dispatch. You will be CZPT to use the machine immediately after received machine. Besides, you will be CZPT to get free training advice towards our machine in our factory. You will also get free suggestion and consultation, technical support and service by email/WhatsApp/tel etc.

FAQ

Q: There are so many machine types, which 1 should I choose?
A: Kahan Laser provides machine parameters in each product demo page, please kindly check technical data column. It is important to compare all data before choose the best prototype. Also, our sales team provides online services to resolve your confusion, feel free to contact us.

Q:This is my first time buying your machine; I have no ideas about Kahan’s machines quality?
A: Each machine is strictly produced based on the standard of ISO9000-2000, ISO14001-2004, GMC global manufacturer and CE certifications. Our products have CE certifications verified by TÜV SÜD, Bureau Veritas and etc. As china high-power laser cutting machine provider, more than 10,000 machines have been sold in the past 10 years. Customer is our first priority. We are confident to tell customers that there is no need to worry about our quality.

Q: When I got this machine, but I don’t know how to use it. What should I do?
A:There are videos and English manual with the machine. If you still have some doubts, we can talk by telephone or email.

Q: If some problems happen to this machine during warranty period, what should I do?
A: We will supply free parts during machine warranty period if machine have some problems. While we also supply free life long after-sales service. If you have any question,just contact us freely.

 

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China wholesaler CNC Metal Cutting Fiber Laser Engraving Machine   near me shop China wholesaler CNC Metal Cutting Fiber Laser Engraving Machine   near me shop