Tag Archives: plastic machine

China OEM Manufacturer Automatic Filling Aseptic Liquid Plastic Bottle Gravity Filling and Packing Machine near me factory

Product Description

Manufacturer Automatic Filling Aseptic Liquid Plastic Bottle Gravity Filling and Packing Machine

production introduction
This machine adopt PLC touch screen Siemens control, adopt through control filling time to reach different volume filling. It’s adopt gravity filling form. The filling nozzle material tank and touches liquid part material is SUSU304 Teflon and POM.And it have proteation device that machine will stop and alarm when lack of materials. And most important there is non-drip filling phenomenon because of anti-drip device.

Application
The materil with lower viscosity, disinfectant liquid , alcohol liquid , mouth wash, glassy water, water, toliet cleaner, diswashing liquid, liquid soap, detergent,solvents, alcohol, specialty chemicals, paint, inks, corrosive chemicals i.e. acids and bleach ect.

Parameter

Filling head 6 heads Voltage 220V
Speed 500-3000BPH  Power 3.0kw
Filling volume 500-5000ml metering error ≤±3‰
Container minimum diameter 50mm Air Comsumption 0.9m3/min
Working Pressure 0.6Mpa-0.7Mpa Dimension 2500mm × 1600mm× 2500mm

 

Manufacturer Automatic Filling Aseptic Liquid Plastic Bottle Gravity Filling and Packing Machine
1) PLC programmable control, with touch screen man-machine interface system .
2) Automatic feeding, automatic filling, automatic out bottle after filling . 
3) Adopting advanced world famous brand components in pneumatic parts, electric parts and operation parts.
4) Stable and reliable operation, high production efficiency, strong adaptability.
5) Filling volume adjustable, each filling nozzle could be single use, you can stop any filling nozzle at any time .

Filling valve : 

Filling valve adopts imported brand, filling precision is very high and more stable, no leakage. 

Filling nozzle
The filling head has anti-drip device. It promise not to waste the material. Adopt 316 high quality stainless steel material . Filling nozzle size according to bottle volume and mouth to make . Can be dive filling . 

 

Material hopper: 

The material tank is used for liquid storage, whole machine body adopt 304 stainless steel  and also can use SUS316 material since it contacts filling liquid and slope design is adopted in the material box design .It is convenient for customers to change varieties, easy to clean, comply with the requirements of GMP.

Filling nozzle adopt bottle mouth diameter custom made , it adopt dive filling to make sure the filling material won’t have bubble. 

Touch screen: 
All control by touch screen .Include the filling volume , filling speed . 

More details about this machine

Packaging & Shipping

Our Services

Installation service

When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well.

The sample service

1.We can send you the video of the running machine.

2.You are welcome to come to visit our factory,and see the machine running.

Customized service 

1.We can design the machines according your requirements(materil,power,filling type,the kinds of the bottles,and so on),at the same time we will give you our professional suggestion,as you know,we have been in this industry for many years.

After-sales service 

1.We will delivery the machine and provide the bill of load on time to make sure you can get the machine quickly

2.When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well.

3. We often ask feedback and offer help to our customer whose machine have been used in their factory for some time. 

4.We provide one year warranty

5.Well-trained & experienced staff are to answer all your inquiries in English and Chinese

6 .24 hours for engineer response (all services part 5days in customer hand by Intl’ courier).

7 .12 Months guarantee and life-long technical support. 

8.Your business relationship with us will be confidential to any third party.

9. Good after-sale service offered, please get back to us if you got any questions.

Quality Control

We have the single quality department,that make sure the material of the raw materials is  good,and ensure the machine running smoothly.

FAQ

Q: Are you trading company or manufacturer ?
A:We are factor lie in ZheJiang province, all machine is made by ourself and we can provide customize service according to your requirement.

Q: How can I ensure that I get a high quality filling machine?
A:As a manufacturer, we have a strict supervision and control of every manufacturing step from raw materials purchasing, brands choosing to parts processing, assembling and testing.

Q: My material viscosity is very high , how can you fix it ? 

A: For some material we can make heating and mixing hopper to make the material can flow. And according to material viscosity to decide to use piston pump filling.

Q: How can I install my machine when it arrives? 
A: The standard machine we will adjust it before shipping, when you get it you can directly use it . If you have other size bottle need change mold, we will send you video of how to adjust it. Also, we can offer over sea technical service to come your factory install machine. 

Q:What about your warranty?
A:Our warranty is 1 year, all machine part can be replaced for free within 1year if broken(not including man made).And offer lifetime after sale service 

Q:What’s the payment terms?
A:T/T,30% deposit and 70% balance before delivery.

Q:How about the spare parts 

 A: After we deal down all the things, we will offer you a spare parts list for your reference.

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China OEM Manufacturer Automatic Filling Aseptic Liquid Plastic Bottle Gravity Filling and Packing Machine   near me factory China OEM Manufacturer Automatic Filling Aseptic Liquid Plastic Bottle Gravity Filling and Packing Machine   near me factory

China Professional Shrink Plastic Flexographic Printing Machine with Best Sales

Product Description

Shrink Plastic Flexographic Printing Machine 

1.;The main features
1.;Take it easy,; accurate color,; long life
2.;The use of motors,; variable frequency speed control,; saving electricity,; running small fluctuations
3.;Off printing roll automatic stop the ink-running motor,; and up-printing roll automatic start running the ink
4.;The use of special synchronous belt,; print size is accurate,;
5.;There are 2 sets of heating devices,; including central heating and constant temperature control system for packet control
6.;Low-roller special steel processing,; and special process,; and plating thickness of 0.;1mm protective layer of hard chromium
7 Alloy roll with hard oxidation,; treating by dynamic balance,; static balanced
8 With a cold wind bellows,; and can effectively prevent produce with ink adhesion after printing
9.;The Print produce are clear and good arrangement quality
10.;Bearing:;NSK,; Japan brand,; Germany ASNU aluminum alloy roll
2.;Main Technical Parameter:;

Model CJS886-6/P CJS886-12

 

How to Choose the Right Worm Shaft

You might be curious to know how to choose the right Worm Shaft. In this article, you will learn about worm modules with the same pitch diameter, Double-thread worm gears, and Self-locking worm drive. Once you have chosen the proper Worm Shaft, you will find it easier to use the equipment in your home. There are many advantages to selecting the right Worm Shaft. Read on to learn more.
worm shaft

Concave shape

The concave shape of a worm’s shaft is an important characteristic for the design of a worm gearing. Worm gearings can be found in a wide range of shapes, and the basic profile parameters are available in professional and firm literature. These parameters are used in geometry calculations, and a selection of the right worm gearing for a particular application can be based on these requirements.
The thread profile of a worm is defined by the tangent to the axis of its main cylinder. The teeth are shaped in a straight line with a slightly concave shape along the sides. It resembles a helical gear, and the profile of the worm itself is straight. This type of gearing is often used when the number of teeth is greater than a certain limit.
The geometry of a worm gear depends on the type and manufacturer. In the earliest days, worms were made similar to simple screw threads, and could be chased on a lathe. During this time, the worm was often made with straight-sided tools to produce threads in the acme plane. Later, grinding techniques improved the thread finish and reduced distortions resulting from hardening.
When a worm gearing has multiple teeth, the pitch angle is a key parameter. A greater pitch angle increases efficiency. If you want to increase the pitch angle without increasing the number of teeth, you can replace a worm pair with a different number of thread starts. The helix angle must increase while the center distance remains constant. A higher pitch angle, however, is almost never used for power transmissions.
The minimum number of gear teeth depends on the angle of pressure at zero gearing correction. The diameter of the worm is d1, and is based on a known module value, mx or mn. Generally, larger values of m are assigned to larger modules. And a smaller number of teeth is called a low pitch angle. In case of a low pitch angle, spiral gearing is used. The pitch angle of the worm gear is smaller than 10 degrees.
worm shaft

Multiple-thread worms

Multi-thread worms can be divided into sets of one, two, or 4 threads. The ratio is determined by the number of threads on each set and the number of teeth on the apparatus. The most common worm thread counts are 1,2,4, and 6. To find out how many threads you have, count the start and end of each thread and divide by two. Using this method, you will get the correct thread count every time.
The tangent plane of a worm’s pitch profile changes as the worm moves lengthwise along the thread. The lead angle is greatest at the throat, and decreases on both sides. The curvature radius r” varies proportionally with the worm’s radius, or pitch angle at the considered point. Hence, the worm leads angle, r, is increased with decreased inclination and decreases with increasing inclination.
Multi-thread worms are characterized by a constant leverage between the gear surface and the worm threads. The ratio of worm-tooth surfaces to the worm’s length varies, which enables the wormgear to be adjusted in the same direction. To optimize the gear contact between the worm and gear, the tangent relationship between the 2 surfaces is optimal.
The efficiency of worm gear drives is largely dependent on the helix angle of the worm. Multiple thread worms can improve the efficiency of the worm gear drive by as much as 25 to 50% compared to single-thread worms. Worm gears are made of bronze, which reduces friction and heat on the worm’s teeth. A specialized machine can cut the worm gears for maximum efficiency.

Double-thread worm gears

In many different applications, worm gears are used to drive a worm wheel. These gears are unique in that the worm cannot be reversed by the power applied to the worm wheel. Because of their self-locking properties, they can be used to prevent reversing motion, although this is not a dependable function. Applications for worm gears include hoisting equipment, elevators, chain blocks, fishing reels, and automotive power steering. Because of their compact size, these gears are often used in applications with limited space.
Worm sets typically exhibit more wear than other types of gears, and this means that they require more limited contact patterns in new parts. Worm wheel teeth are concave, making it difficult to measure tooth thickness with pins, balls, and gear tooth calipers. To measure tooth thickness, however, you can measure backlash, a measurement of the spacing between teeth in a gear. Backlash can vary from 1 worm gear to another, so it is important to check the backlash at several points. If the backlash is different in 2 places, this indicates that the teeth may have different spacing.
Single-thread worm gears provide high speed reduction but lower efficiency. A multi-thread worm gear can provide high efficiency and high speed, but this comes with a trade-off in terms of horsepower. However, there are many other applications for worm gears. In addition to heavy-duty applications, they are often used in light-duty gearboxes for a variety of functions. When used in conjunction with double-thread worms, they allow for a substantial speed reduction in 1 step.
Stainless-steel worm gears can be used in damp environments. The worm gear is not susceptible to rust and is ideal for wet and damp environments. The worm wheel’s smooth surfaces make cleaning them easy. However, they do require lubricants. The most common lubricant for worm gears is mineral oil. This lubricant is designed to protect the worm drive.
worm shaft

Self-locking worm drive

A self-locking worm drive prevents the platform from moving backward when the motor stops. A dynamic self-locking worm drive is also possible but does not include a holding brake. This type of self-locking worm drive is not susceptible to vibrations, but may rattle if released. In addition, it may require an additional brake to keep the platform from moving. A positive brake may be necessary for safety.
A self-locking worm drive does not allow for the interchangeability of the driven and driving gears. This is unlike spur gear trains that allow both to interchange positions. In a self-locking worm drive, the driving gear is always engaged and the driven gear remains stationary. The drive mechanism locks automatically when the worm is operated in the wrong manner. Several sources of information on self-locking worm gears include the Machinery’s Handbook.
A self-locking worm drive is not difficult to build and has a great mechanical advantage. In fact, the output of a self-locking worm drive cannot be backdriven by the input shaft. DIYers can build a self-locking worm drive by modifying threaded rods and off-the-shelf gears. However, it is easier to make a ratchet and pawl mechanism, and is significantly less expensive. However, it is important to understand that you can only drive 1 worm at a time.
Another advantage of a self-locking worm drive is the fact that it is not possible to interchange the input and output shafts. This is a major benefit of using such a mechanism, as you can achieve high gear reduction without increasing the size of the gear box. If you’re thinking about buying a self-locking worm gear for a specific application, consider the following tips to make the right choice.
An enveloping worm gear set is best for applications requiring high accuracy and efficiency, and minimum backlash. Its teeth are shaped differently, and the worm’s threads are modified to increase surface contact. They are more expensive to manufacture than their single-start counterparts, but this type is best for applications where accuracy is crucial. The worm drive is also a great option for heavy trucks because of their large size and high-torque capacity.

China Professional Shrink Plastic Flexographic Printing Machine   with Best SalesChina Professional Shrink Plastic Flexographic Printing Machine   with Best Sales

China Hot selling Automatic Servo Drive 4 Cavity Plastic Container Bottling Shampoo Machine/ Pet Bottle Blow Moulding Machine Price with Good quality

Product Description

Automatic Servo Drive 4 Cavity Plastic Container Bottling Shampoo Machine/ PET Bottle Blow Moulding Machine Price

The PET bottle blowing machine plastic bottle machine is suitable for the production of 0.1-2.0L plastic containers and round and square bottles. 

PM series pet stretch blow molding machine is the most stable two-step automatic stretch blow moulding machine.

It has various cavities and the maximum capacity of the products is 20L.

It can blow bottles in shapes: carbonated, mineral, pesticide, cosmetics, wide-mouth, hot filling, and other packing containers etc. which is made of plastic of crystalline type, such as PET and PP etc.

Advantages of Our Bottle Blow Molding Machine

1.Automatic perform input and ready bottle output system.
2.Machine adopt with the overall structure of super-standard anti-vibration design, high-speed operation state of the machine will shake down to a minimum.
3.Machine adopts modular assembly method, greatly decrease the local amendments due to technological improvements when the machine is on processing.
4.The structure of machine oven adopt the international most advanced energy-saving technology of infrared radiation heating, temperature control with automatic negative feedback, closed-loop regulation model.
5.Automation controlling item adopts international high-end computer system, heating, collecting and measuring perform temperature with simulation input and output module.
6.Man-machine interface displays current production situation, available for on line switching, parameter modification and production accounting, with automatic alarm, automatic fault detection and diagnose.
7.Storing more than 7 kinds specification for making bottle.
8.Adopt latest international air pneumatic.
9.In order to save air, we choose high pressure blowing exhaust recovery system, which can save energy by 10-15%.

Details of Our Bottle Blow Molding Machine

Line Flow Chart

                                   PET preform→autoloader→reheater →molding→ bottles 

Technical Parameters

Model Item PM-A2 PM-A4 PM-A6
Productivity Depend on bottle design 1800-2000PCS/H 3200-4000PCS/H 4000-5500PCS/H
Product type Volume 0.1-2.0L
Body Diameter ≤100mm
Height ≤330mm
Neck Diameter ≤38mm
Mold Cavity 2 4 6
Mold thickness 240mm
Mold volume 260*240*370mm 510*240*360mm 640*240*360mm
Main machine power Electrical source power 380V/220V  50/60HZ
  3Phase
Rated power 25KW 49KW 73KW
Really use power 6.5KW 13KW 25KW
Air system HP air compressor 1.6m³/min 3.0MPa 3.0m³/min 3.0MPa 6.0m³/min 3.0MPa
LP air compressor 1.0m³/min 1.0MPa 1.6m³/min 1.0MPa 2.0m³/min 1.0MPa
Air Tank 0.6m³ 3.0MPa 0.6m³ 3.0MPa 1.0m³ 3.0MPa
Air dryer 1.0m³/min 3.0MPa 2.0m³/min 3.0MPa 6.0m³/min 3.0MPa
Cooling water Water Chiller 3HP 3HP 5HP
Machine Size(L*W*H) 1900*1280*1930mm 1900*1860*1930mm 4100*1400*1800mm
Weight 2000KG 3600KG 3200KG
Preform unscrambler Size(L*W*H) 2000*950*2480mm 2000*950*2480mm 2000*950*2480mm
Weight 250KG 250KG 250KG

Our Service
Customized service
We can design the machines according your requirements(material,power,filling type,the kinds of the bottles,and so on),at the same time we will give you our professional suggestion,as you know,we have been in this industry for many years.

After-sales service
1.We will delivery the machine and provide the bill of load on time to make sure you can get the machine quickly 
2.When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well. 
3.We often ask feedback and offer help to our customer whose machine have been used in their factory for some time.
4.We provide 1 year warranty 
5.Well-trained & experienced staff are to answer all your inquiries in English and Chinese
6.24 hours for engineer response (all services part 5days in customer hand by Intl’ courier). 
7.12 Months guarantee and life-long technical support.
8.Your business relationship with us will be confidential to any third party. 
9.Good after-sale service offered, please get back to us if you got any questions.

Quality Control
We have separate quality control department, which make sure the raw materials are qualified,also ensure the machine running smoothly. 
If you want to know more information about the product,Send inquiry to us, we will solve any of your problems and send you running video for reference.

Packaging & Shipping

Company Information
HangZhou Proman Machine Co., Ltd. is a production manufacturer and exporter in China, specialized in water treatment plants,beverage filling machine, packing machine, bottle blowing machine, injection moulding machine and spare parts of filling line.

Our factory was established in the year of 1998, with the long history of accumulated experience in filling machine industry in south ZheJiang . There are many development engineers of filling machine in our company. We devote ourselves to the development, research and production of liquid food and beverage packing and filling industry.

Besides, we have our own designs for the bottles.

Proman Machine cooperated with many customers in recent years, we win the trust of customers from our high-quality products. And we are looking forward to the future cooperation with you if our products can impress you deeply!

FAQ

1. Where is your factory? 
Our Factory is located in HangZhou City, 2 hours drive from ZheJiang and 1 hour drive from HangZhou(airplane & high-speed rail). If you arrive at ZheJiang or HangZhou, we can pick you up to visit our factory.

2. Do you have any technical supports with your Bottle Blow Molding Machines? 
Yes, We have a professional team of engineers who owned many installation, debug and training experiences abroad, are available to service machinery overseas. 

3. What’s your guarantee or the warranty of the quality if we buy your machines? 
We offer high quality machines with 1 year warranty and supply life-long technical support. 
You’re always welcome to visit our company. If you have any interest on our products. Please do not hesitate to contact us.

 

What Are Worm Gears and Worm Shafts?

If you’re looking for a fishing reel with a worm gear system, you’ve probably come across the term ‘worm gear’. But what are worm gears and worm shafts? And what are the advantages and disadvantages of worm gears? Let’s take a closer look! Read on to learn more about worm gears and shafts! Then you’ll be well on your way to purchasing a reel with a worm gear system.
worm shaft

worm gear reducers

Worm shaft reducers have a number of advantages over conventional gear reduction mechanisms. First, they’re highly efficient. While single stage worm reducers have a maximum reduction ratio of about 5 to 60, hypoid gears can typically go up to a maximum of 1 hundred and 20 times. A worm shaft reducer is only as efficient as the gearing it utilizes. This article will discuss some of the advantages of using a hypoid gear set, and how it can benefit your business.
To assemble a worm shaft reducer, first remove the flange from the motor. Then, remove the output bearing carrier and output gear assembly. Lastly, install the intermediate worm assembly through the bore opposite to the attachment housing. Once installed, you should carefully remove the bearing carrier and the gear assembly from the motor. Don’t forget to remove the oil seal from the housing and motor flange. During this process, you must use a small hammer to tap around the face of the plug near the outside diameter of the housing.
Worm gears are often used in reversing prevention systems. The backlash of a worm gear can increase with wear. However, a duplex worm gear was designed to address this problem. This type of gear requires a smaller backlash but is still highly precise. It uses different leads for the opposing tooth face, which continuously alters its tooth thickness. Worm gears can also be adjusted axially.

worm gears

There are a couple of different types of lubricants that are used in worm gears. The first, polyalkylene glycols, are used in cases where high temperature is not a concern. This type of lubricant does not contain any waxes, which makes it an excellent choice in low-temperature applications. However, these lubricants are not compatible with mineral oils or some types of paints and seals. Worm gears typically feature a steel worm and a brass wheel. The brass wheel is much easier to remodel than steel and is generally modeled as a sacrificial component.
The worm gear is most effective when it is used in small and compact applications. Worm gears can greatly increase torque or reduce speed, and they are often used where space is an issue. Worm gears are among the smoothest and quietest gear systems on the market, and their meshing effectiveness is excellent. However, the worm gear requires high-quality manufacturing to perform at its highest levels. If you’re considering a worm gear for a project, it’s important to make sure that you find a manufacturer with a long and high quality reputation.
The pitch diameters of both worm and pinion gears must match. The 2 worm cylinders in a worm wheel have the same pitch diameter. The worm wheel shaft has 2 pitch cylinders and 2 threads. They are similar in pitch diameter, but have different advancing angles. A self-locking worm gear, also known as a wormwheel, is usually self-locking. Moreover, self-locking worm gears are easy to install.

worm shafts

The deflection of worm shafts varies with toothing parameters. In addition to toothing length, worm gear size and pressure angle, worm gear size and number of helical threads are all influencing factors. These variations are modeled in the standard ISO/TS 14521 reference gear. This table shows the variations in each parameter. The ID indicates the worm shaft’s center distance. In addition, a new calculation method is presented for determining the equivalent bending diameter of the worm.
The deflection of worm shafts is investigated using a four-stage process. First, the finite element method is used to compute the deflection of a worm shaft. Then, the worm shaft is experimentally tested, comparing the results with the corresponding simulations. The final stage of the simulation is to consider the toothing geometry of 15 different worm gear toothings. The results of this step confirm the modeled results.
The lead on the right and left tooth surfaces of worms is the same. However, the lead can be varied along the worm shaft. This is called dual lead worm gear, and is used to eliminate play in the main worm gear of hobbing machines. The pitch diameters of worm modules are equal. The same principle applies to their pitch diameters. Generally, the lead angle increases as the number of threads decreases. Hence, the larger the lead angle, the less self-locking it becomes.
worm shaft

worm gears in fishing reels

Fishing reels usually include worm shafts as a part of the construction. Worm shafts in fishing reels allow for uniform worm winding. The worm shaft is attached to a bearing on the rear wall of the reel unit through a hole. The worm shaft’s front end is supported by a concave hole in the front of the reel unit. A conventional fishing reel may also have a worm shaft attached to the sidewall.
The gear support portion 29 supports the rear end of the pinion gear 12. It is a thick rib that protrudes from the lid portion 2 b. It is mounted on a bushing 14 b, which has a through hole through which the worm shaft 20 passes. This worm gear supports the worm. There are 2 types of worm gears available for fishing reels. The 2 types of worm gears may have different number of teeth or they may be the same.
Typical worm shafts are made of stainless steel. Stainless steel worm shafts are especially corrosion-resistant and durable. Worm shafts are used on spinning reels, spin-casting reels, and in many electrical tools. A worm shaft can be reversible, but it is not entirely reliable. There are numerous benefits of worm shafts in fishing reels. These fishing reels also feature a line winder or level winder.

worm gears in electrical tools

Worms have different tooth shapes that can help increase the load carrying capacity of a worm gear. Different tooth shapes can be used with circular or secondary curve cross sections. The pitch point of the cross section is the boundary for this type of mesh. The mesh can be either positive or negative depending on the desired torque. Worm teeth can also be inspected by measuring them over pins. In many cases, the lead thickness of a worm can be adjusted using a gear tooth caliper.
The worm shaft is fixed to the lower case section 8 via a rubber bush 13. The worm wheel 3 is attached to the joint shaft 12. The worm 2 is coaxially attached to the shaft end section 12a. This joint shaft connects to a swing arm and rotates the worm wheel 3.
The backlash of a worm gear may be increased if the worm is not mounted properly. To fix the problem, manufacturers have developed duplex worm gears, which are suitable for small backlash applications. Duplex worm gears utilize different leads on each tooth face for continuous change in tooth thickness. In this way, the center distance of the worm gear can be adjusted without changing the worm’s design.

worm gears in engines

Using worm shafts in engines has a few benefits. First of all, worm gears are quiet. The gear and worm face move in opposite directions so the energy transferred is linear. Worm gears are popular in applications where torque is important, such as elevators and lifts. Worm gears also have the advantage of being made from soft materials, making them easy to lubricate and to use in applications where noise is a concern.
Lubricants are necessary for worm gears. The viscosity of lubricants determines whether the worm is able to touch the gear or wheel. Common lubricants are ISO 680 and 460, but higher viscosity oil is not uncommon. It is essential to use the right lubricants for worm gears, since they cannot be lubricated indefinitely.
Worm gears are not recommended for engines due to their limited performance. The worm gear’s spiral motion causes a significant reduction in space, but this requires a high amount of lubrication. Worm gears are susceptible to breaking down because of the stress placed on them. Moreover, their limited speed can cause significant damage to the gearbox, so careful maintenance is essential. To make sure worm gears remain in top condition, you should inspect and clean them regularly.
worm shaft

Methods for manufacturing worm shafts

A novel approach to manufacturing worm shafts and gearboxes is provided by the methods of the present invention. Aspects of the technique involve manufacturing the worm shaft from a common worm shaft blank having a defined outer diameter and axial pitch. The worm shaft blank is then adapted to the desired gear ratio, resulting in a gearbox family with multiple gear ratios. The preferred method for manufacturing worm shafts and gearboxes is outlined below.
A worm shaft assembly process may involve establishing an axial pitch for a given frame size and reduction ratio. A single worm shaft blank typically has an outer diameter of 100 millimeters, which is the measurement of the worm gear set’s center distance. Upon completion of the assembly process, the worm shaft has the desired axial pitch. Methods for manufacturing worm shafts include the following:
For the design of the worm gear, a high degree of conformity is required. Worm gears are classified as a screw pair in the lower pairs. Worm gears have high relative sliding, which is advantageous when comparing them to other types of gears. Worm gears require good surface finish and rigid positioning. Worm gear lubrication usually comprises surface active additives such as silica or phosphor-bronze. Worm gear lubricants are often mixed. The lubricant film that forms on the gear teeth has little impact on wear and is generally a good lubricant.

China Hot selling Automatic Servo Drive 4 Cavity Plastic Container Bottling Shampoo Machine/ Pet Bottle Blow Moulding Machine Price   with Good qualityChina Hot selling Automatic Servo Drive 4 Cavity Plastic Container Bottling Shampoo Machine/ Pet Bottle Blow Moulding Machine Price   with Good quality

China factory Hydraulic Plastic Film Hole/Needle Perforation Punching Machine near me shop

Product Description

Perforating hole shapes Micro air holes, large air holes, round hot holes, oval hot holes, point gasification hole and so on (other hole shapes also can be customized)
Perforating hole size 0.03-20mm
Heating roller temperature
 
≤300ºC
Needle roller It’s processed by high-precision equipment abroad
Needle roller advantages 1) With high needle density, needle center distance error is no more than 0.001 mm.
2) Tip surface concentricity≤0.005 mm.

Features:
1) Equipment function: film cold perforating, hot perforating, blanching hole and hot Puncture hole.
2) Perforating material: all kinds of packing plastic film, paper, compound film, copper foil, aluminum foil, non-woven fabric and Car sound insulation board etc., which is especially suitable for those materials such as non-woven fabric, OPP,PE,PET,desiccant, deoxidizer packing compound films.
3) The performance of micro tension synchronous rewinding can reach to the standard of that
in Germany and Japan.

Technological Process:
Decoiler → feeding guide → perforating forming → discharging guide → coiling.

 

Model HK-1600
Unwinding rack Steel plate structure
Unwinding form Magnetic powder brake
Unwinding load-bearing 1200kg
Emboss machine form Vertical 2 rollers perforating machine
Effective worktable size 1600mm
Single roller diameter 1200mm
Single layer thickness 0.3mm
Production capacity 0-100m/min
Perforating adjust method Screw pressure
Transmission Gear drive
Perforating form Upper and lower concave-convex rollers opposing pressure.
Weight 3500kg
Cycloidal pin gear speed reducer XWD7-11-7.5
Three-phase asynchronous motor HangZhou Shun Bal Electric CO., LTD
Frequency conversion brand Taida
Embossing machine rack Steel plate structure
Embossed material PET FOIL,MPET,Kraft paper
Arrangement Cross arrangement
Hole shape Circle hole+needle hole
Winding rack Steel plate structure
Winding form Motor winding
Winding power 5.5kw
Winding load-bearing 1200kg
Winding diameter 1200mm
Machine size 1600mm*2000mm*1300mm

About us:

ZHangZhoug Zhongnuo Intelligent Machinery Co., Ltd. was founded in 2014, It is a National High-Tech Enterprise that is specializing in scientific research, development and manufacturing of various types of metal sheet intelligent embossing machines and forming machines. Company’s main business: Industrial Robots, Intelligent Manipulators, Intelligent Embossing Production Lines, Medical Machinery, Industrial Automation Equipment, CNC Precision Leveling Machines, Intelligent Metal Forming Machines, Fully-automatic Embossing Machines, Fully-automatic Flattening lines and Precision Perforating Machines, etc. Product application areas: Transportation, Medical Treatment, Aviation, Motor Trains, Automobiles, Home Appliances, Sanitary Materials, Building Materials, etc. Our products have exported to Europe, America, Japan, South Korea, the Middle East, Southeast Asia, Africa and many other countries all over the world. We are based on the idea of ” Honesty, Quality, Service, and Innovation”, which brought us lots of customers. At present, our company has continuous friendly relations with many big enterprises, such as the 59th Research Institute of China Ordnance Industry, Aviation Industry, HangZhou Special Structure Research Institute, Virginia, Maosen Group, CZPT Group, Mingbo shares, Rihan Group etc.

 

Why choose us

ZHangZhoug Zhongnuo Intelligent Machinery Co., Ltd. has sophisticated equipment, advanced technology and strong technical force. Our company took the lead to pass IS09001 quality system certification, our company was rated as a small and medium-sized Science and Technology Enterprise in ZHangZhoug Province. In the year of 2571, our company was honored as a High-growth Technological Enterprise and National High-Tech Enterprise in ZHangZhoug Province. Meanwhile our company absorbed foreign advanced technology to product, so ZHangZhoug Zhongnuo Intelligent Machinery Co., Ltd. is the high quality roller machinery manufacturer in China. Now our products are widely recognized and trusted by users and can meet continuously changing economic and social needs.
 

Packaging & Shipping

FAQ

Q: Are you factory or trade company?
A: We are factory and we have a professional engineer team which can design the machine as customers’ request

Q: Do you have after sales support?
A: Yes, we are happy to give advice and we also have skilled technicians available. If any question during operation,
    you can contact us, and we’ll help you to solve the problems.

Q: How do your machines compare with other big companies in this market?
A: We are up to date with the latest technology and rich experience about machines and global market.
      We boast of professional engineer team and after-sale service team.

Q: If we’ve bought a machine from you, are you CZPT to supply us with material?
A: We can offer you or help you to find suitable materials for your machines.

Q: Do you sell only standard machines?
A: No, most of our machines are made according to customers’ special requirements, and all our machines can be customized.  

 

What Are the Advantages of a Splined Shaft?

If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts

When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are 2 main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each 1 is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
splineshaft

They provide low noise, low wear and fatigue failure

The splines in a splined shaft are composed of 2 main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
splineshaft

They can be machined using a slotting or shaping machine

Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are 2 common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between 2 centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.

China factory Hydraulic Plastic Film Hole/Needle Perforation Punching Machine   near me shop China factory Hydraulic Plastic Film Hole/Needle Perforation Punching Machine   near me shop

China Custom Multi-Function Laminated Film 120/180/200cpm Aluminium Plastic Round Bottom / Doyen / Doypack Pouch Bag Making Machine with Servo-Drive System for Cosmetic with Free Design Custom

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

How to Determine the Quality of a Worm Shaft

There are many advantages of a worm shaft. It is easier to manufacture, as it does not require manual straightening. Among these benefits are ease of maintenance, reduced cost, and ease of installation. In addition, this type of shaft is much less prone to damage due to manual straightening. This article will discuss the different factors that determine the quality of a worm shaft. It also discusses the Dedendum, Root diameter, and Wear load capacity.
worm shaft

Root diameter

There are various options when choosing worm gearing. The selection depends on the transmission used and production possibilities. The basic profile parameters of worm gearing are described in the professional and firm literature and are used in geometry calculations. The selected variant is then transferred to the main calculation. However, you must take into account the strength parameters and the gear ratios for the calculation to be accurate. Here are some tips to choose the right worm gearing.
The root diameter of a worm gear is measured from the center of its pitch. Its pitch diameter is a standardized value that is determined from its pressure angle at the point of zero gearing correction. The worm gear pitch diameter is calculated by adding the worm’s dimension to the nominal center distance. When defining the worm gear pitch, you have to keep in mind that the root diameter of the worm shaft must be smaller than the pitch diameter.
Worm gearing requires teeth to evenly distribute the wear. For this, the tooth side of the worm must be convex in the normal and centre-line sections. The shape of the teeth, referred to as the evolvent profile, resembles a helical gear. Usually, the root diameter of a worm gear is more than a quarter inch. However, a half-inch difference is acceptable.
Another way to calculate the gearing efficiency of a worm shaft is by looking at the worm’s sacrificial wheel. A sacrificial wheel is softer than the worm, so most wear and tear will occur on the wheel. Oil analysis reports of worm gearing units almost always show a high copper and iron ratio, suggesting that the worm’s gearing is ineffective.

Dedendum

The dedendum of a worm shaft refers to the radial length of its tooth. The pitch diameter and the minor diameter determine the dedendum. In an imperial system, the pitch diameter is referred to as the diametral pitch. Other parameters include the face width and fillet radius. Face width describes the width of the gear wheel without hub projections. Fillet radius measures the radius on the tip of the cutter and forms a trochoidal curve.
The diameter of a hub is measured at its outer diameter, and its projection is the distance the hub extends beyond the gear face. There are 2 types of addendum teeth, 1 with short-addendum teeth and the other with long-addendum teeth. The gears themselves have a keyway (a groove machined into the shaft and bore). A key is fitted into the keyway, which fits into the shaft.
Worm gears transmit motion from 2 shafts that are not parallel, and have a line-toothed design. The pitch circle has 2 or more arcs, and the worm and sprocket are supported by anti-friction roller bearings. Worm gears have high friction and wear on the tooth teeth and restraining surfaces. If you’d like to know more about worm gears, take a look at the definitions below.
worm shaft

CZPT’s whirling process

Whirling process is a modern manufacturing method that is replacing thread milling and hobbing processes. It has been able to reduce manufacturing costs and lead times while producing precision gear worms. In addition, it has reduced the need for thread grinding and surface roughness. It also reduces thread rolling. Here’s more on how CZPT whirling process works.
The whirling process on the worm shaft can be used for producing a variety of screw types and worms. They can produce screw shafts with outer diameters of up to 2.5 inches. Unlike other whirling processes, the worm shaft is sacrificial, and the process does not require machining. A vortex tube is used to deliver chilled compressed air to the cutting point. If needed, oil is also added to the mix.
Another method for hardening a worm shaft is called induction hardening. The process is a high-frequency electrical process that induces eddy currents in metallic objects. The higher the frequency, the more surface heat it generates. With induction heating, you can program the heating process to harden only specific areas of the worm shaft. The length of the worm shaft is usually shortened.
Worm gears offer numerous advantages over standard gear sets. If used correctly, they are reliable and highly efficient. By following proper setup guidelines and lubrication guidelines, worm gears can deliver the same reliable service as any other type of gear set. The article by Ray Thibault, a mechanical engineer at the University of Virginia, is an excellent guide to lubrication on worm gears.

Wear load capacity

The wear load capacity of a worm shaft is a key parameter when determining the efficiency of a gearbox. Worms can be made with different gear ratios, and the design of the worm shaft should reflect this. To determine the wear load capacity of a worm, you can check its geometry. Worms are usually made with teeth ranging from 1 to 4 and up to twelve. Choosing the right number of teeth depends on several factors, including the optimisation requirements, such as efficiency, weight, and centre-line distance.
Worm gear tooth forces increase with increased power density, causing the worm shaft to deflect more. This reduces its wear load capacity, lowers efficiency, and increases NVH behavior. Advances in lubricants and bronze materials, combined with better manufacturing quality, have enabled the continuous increase in power density. Those 3 factors combined will determine the wear load capacity of your worm gear. It is critical to consider all 3 factors before choosing the right gear tooth profile.
The minimum number of gear teeth in a gear depends on the pressure angle at zero gearing correction. The worm diameter d1 is arbitrary and depends on a known module value, mx or mn. Worms and gears with different ratios can be interchanged. An involute helicoid ensures proper contact and shape, and provides higher accuracy and life. The involute helicoid worm is also a key component of a gear.
Worm gears are a form of ancient gear. A cylindrical worm engages with a toothed wheel to reduce rotational speed. Worm gears are also used as prime movers. If you’re looking for a gearbox, it may be a good option. If you’re considering a worm gear, be sure to check its load capacity and lubrication requirements.
worm shaft

NVH behavior

The NVH behavior of a worm shaft is determined using the finite element method. The simulation parameters are defined using the finite element method and experimental worm shafts are compared to the simulation results. The results show that a large deviation exists between the simulated and experimental values. In addition, the bending stiffness of the worm shaft is highly dependent on the geometry of the worm gear toothings. Hence, an adequate design for a worm gear toothing can help reduce the NVH (noise-vibration) behavior of the worm shaft.
To calculate the worm shaft’s NVH behavior, the main axes of moment of inertia are the diameter of the worm and the number of threads. This will influence the angle between the worm teeth and the effective distance of each tooth. The distance between the main axes of the worm shaft and the worm gear is the analytical equivalent bending diameter. The diameter of the worm gear is referred to as its effective diameter.
The increased power density of a worm gear results in increased forces acting on the corresponding worm gear tooth. This leads to a corresponding increase in deflection of the worm gear, which negatively affects its efficiency and wear load capacity. In addition, the increasing power density requires improved manufacturing quality. The continuous advancement in bronze materials and lubricants has also facilitated the continued increase in power density.
The toothing of the worm gears determines the worm shaft deflection. The bending stiffness of the worm gear toothing is also calculated by using a tooth-dependent bending stiffness. The deflection is then converted into a stiffness value by using the stiffness of the individual sections of the worm shaft. As shown in figure 5, a transverse section of a two-threaded worm is shown in the figure.

China Custom Multi-Function Laminated Film 120/180/200cpm Aluminium Plastic Round Bottom / Doyen / Doypack Pouch Bag Making Machine with Servo-Drive System for Cosmetic   with Free Design CustomChina Custom Multi-Function Laminated Film 120/180/200cpm Aluminium Plastic Round Bottom / Doyen / Doypack Pouch Bag Making Machine with Servo-Drive System for Cosmetic   with Free Design Custom

China Good quality Factory Direct Sale Automatic Eyelet Punching Machine for Paper Film PE Plastic Nonwoven Leather Punching wholesaler

Product Description

Perforating hole shapes Micro air holes, large air holes, round hot holes, oval hot holes, point gasification hole and so on (other hole shapes also can be customized)
Perforating hole size 0.03-20mm
Heating roller temperature
 
≤300ºC
Needle roller It’s processed by high-precision equipment abroad
Needle roller advantages 1) With high needle density, needle center distance error is no more than 0.001 mm.
2) Tip surface concentricity≤0.005 mm.

Features:
1) Equipment function: film cold perforating, hot perforating, blanching hole and hot Puncture hole.
2) Perforating material: all kinds of packing plastic film, paper, compound film, copper foil, aluminum foil, non-woven fabric and Car sound insulation board etc., which is especially suitable for those materials such as non-woven fabric, OPP,PE,PET,desiccant, deoxidizer packing compound films.
3) The performance of micro tension synchronous rewinding can reach to the standard of that
in Germany and Japan.

Technological Process:
Decoiler → feeding guide → perforating forming → discharging guide → coiling.

 

Model HK-1600
Unwinding rack Steel plate structure
Unwinding form Magnetic powder brake
Unwinding load-bearing 1200kg
Emboss machine form Vertical 2 rollers perforating machine
Effective worktable size 1600mm
Single roller diameter 1200mm
Single layer thickness 0.3mm
Production capacity 0-100m/min
Perforating adjust method Screw pressure
Transmission Gear drive
Perforating form Upper and lower concave-convex rollers opposing pressure.
Weight 3500kg
Cycloidal pin gear speed reducer XWD7-11-7.5
Three-phase asynchronous motor HangZhou Shun Bal Electric CO., LTD
Frequency conversion brand Taida
Embossing machine rack Steel plate structure
Embossed material PET FOIL,MPET,Kraft paper
Arrangement Cross arrangement
Hole shape Circle hole+needle hole
Winding rack Steel plate structure
Winding form Motor winding
Winding power 5.5kw
Winding load-bearing 1200kg
Winding diameter 1200mm
Machine size 1600mm*2000mm*1300mm

About us:

ZHangZhoug Zhongnuo Intelligent Machinery Co., Ltd. was founded in 2014, It is a National High-Tech Enterprise that is specializing in scientific research, development and manufacturing of various types of metal sheet intelligent embossing machines and forming machines. Company’s main business: Industrial Robots, Intelligent Manipulators, Intelligent Embossing Production Lines, Medical Machinery, Industrial Automation Equipment, CNC Precision Leveling Machines, Intelligent Metal Forming Machines, Fully-automatic Embossing Machines, Fully-automatic Flattening lines and Precision Perforating Machines, etc. Product application areas: Transportation, Medical Treatment, Aviation, Motor Trains, Automobiles, Home Appliances, Sanitary Materials, Building Materials, etc. Our products have exported to Europe, America, Japan, South Korea, the Middle East, Southeast Asia, Africa and many other countries all over the world. We are based on the idea of ” Honesty, Quality, Service, and Innovation”, which brought us lots of customers. At present, our company has continuous friendly relations with many big enterprises, such as the 59th Research Institute of China Ordnance Industry, Aviation Industry, HangZhou Special Structure Research Institute, Virginia, Maosen Group, CZPT Group, Mingbo shares, Rihan Group etc.

 

Why choose us

ZHangZhoug Zhongnuo Intelligent Machinery Co., Ltd. has sophisticated equipment, advanced technology and strong technical force. Our company took the lead to pass IS09001 quality system certification, our company was rated as a small and medium-sized Science and Technology Enterprise in ZHangZhoug Province. In the year of 2571, our company was honored as a High-growth Technological Enterprise and National High-Tech Enterprise in ZHangZhoug Province. Meanwhile our company absorbed foreign advanced technology to product, so ZHangZhoug Zhongnuo Intelligent Machinery Co., Ltd. is the high quality roller machinery manufacturer in China. Now our products are widely recognized and trusted by users and can meet continuously changing economic and social needs.
 

Packaging & Shipping

FAQ

Q: Are you factory or trade company?
A: We are factory and we have a professional engineer team which can design the machine as customers’ request

Q: Do you have after sales support?
A: Yes, we are happy to give advice and we also have skilled technicians available. If any question during operation,
    you can contact us, and we’ll help you to solve the problems.

Q: How do your machines compare with other big companies in this market?
A: We are up to date with the latest technology and rich experience about machines and global market.
      We boast of professional engineer team and after-sale service team.

Q: If we’ve bought a machine from you, are you CZPT to supply us with material?
A: We can offer you or help you to find suitable materials for your machines.

Q: Do you sell only standard machines?
A: No, most of our machines are made according to customers’ special requirements, and all our machines can be customized.  

 

Screw Shaft Features Explained

When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.

Threads

The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
screwshaft

Lead

In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.

Pitch

The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.

Helix angle

The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
screwshaft

Size

The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
screwshaft

Shape

Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.

Lubrication

In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.

China Good quality Factory Direct Sale Automatic Eyelet Punching Machine for Paper Film PE Plastic Nonwoven Leather Punching   wholesaler China Good quality Factory Direct Sale Automatic Eyelet Punching Machine for Paper Film PE Plastic Nonwoven Leather Punching   wholesaler

China OEM Fully Automatic Multi-Function Laminated Film Aluminium Plastic K Seal / Skirt Seal Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt with high quality

Product Description

 

SPECIFICATION
 

Center Lap Seal Pouch / Bag Making Machine Serious

Equipment Center Lap Seal 350 Center Lap Seal 450 Center Lap Seal 600
Model HD-350BTZ HD-450BTZ HD-600BTZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Lap & Fin Pouch / Bag Making Machine Serious

Equipment Center Lap & Fin Seal
350
Center Lap & Fin Seal
450
Center Lap & Fin Seal
600
Model HD-350BTQZ HD-450BTQZ HD-600BTQZ
Max. Unwinding Width(mm) 850 1050 1200
Max. Pouch Width(mm) 350 450 600
Min. Pouch Height(mm) 50
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-200  Depends on specific condition of machine operating and material

 

Center Seal Stand-Up Pouch / Bag Machine Serious

Equipment Center Lap & Fin Seal 450 Center Seal & Stand-up 600
Model HD-450BTZMML HD-600BTZMML
Max. Unwinding Width(mm) 1050 1200
Max. Pouch Width(mm) 450 600
Min. Pouch Height(mm) 30
Max. Gusset Depth(mm) 60
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal Pouch / Bag Making Machine Serious

Equipment 3-Side Seal 600
Model HD-600BU
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 30
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 200  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up 600
Model HD-600BUML
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

3-Side Seal & Stand-Up Plus Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up Plus 600
Model HD-600BULL
Max. Unwinding Width(mm) 1200
Max. Pouch Width(mm) 600
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 100-180  Depends on specific condition of machine operating and material

 

3-Side Seal & Stand-Up Ultra Pouch / Bag Making Machine Serious

Equipment 3-Side Seal & Stand-Up
Ultra 850
3-Side Seal & Stand-Up
Ultra 1100
3-Side Seal & Stand-Up
Ultra 1250
Model HD-850BU HD-1100BU HD-1250BU
Max. Unwinding Width(mm) 1500 Single Unwiding 1100 Double Unwiding 1250 Double Unwiding
Max. Pouch Width(mm) 850 1100 1250
Min. Pouch Height(mm) 50
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 120-180  Depends on specific condition of machine operating and material

 

Flat Bottom Pouch / Bag Making Machine Serious

Equipment Flat Bottom 600
Model HD-600BF
Max. Unwinding Width(mm) 1200
Max. Feeding Speed(m/min) 45
Pouch Making Speed(pcs/min) 90-110  Depends on specific condition of machine operating and material

As a technology-based company with independent R&D and manufacturing capabilities, Tie Min’s founding team already has extensive experience in the flexible packaging industry more earlier before its establishement in 2001, which makes Tie Min can design and produce the bag / pouch machine from the perspective of customers – we came from the customers, and we are going back to the customers, we know flexible packaging industry better, so can make pouch / bag making machine right.After more than 20 years of continuous development in the industry, Tie Min has accumulated a wealth of experience in designing, technical and economic evaluation, manufacturing, installation, commissioning, staff training, and after-sales service, and have been striving to create lasting relationships with customers all over the world, guarantee that they can count on us for CZPT pricing and quality with zero hassle, which is based on a complete set of production and testing equipment, a perfect managment of supply chain, as well as a group of highly qualified professional technicians of designing, construction, and manufacturing.
Tie Min Machine is dedicated to helping customers get the most right solutions of flexible packaging. 
Let us know what we can do for your business by leaving us a message. We’re here to make sure you don’t have to worry about anything.
Features:  · PLC Controlled Pneumatic Locking Unwinding System integrated with extra EPC to achieve more precise control and more stable feeding – Pouch Making Speed and Yield Rate Guaranteed · Multiple Photoelectric Sensors and Mechanical Limits are applied to the material with and without printing to achieve production with different materials in just 1 machine – Early Investment Minimized · CRT Touch Screen with  Remote Diagnostic and Restoration Function, plus a full set of manual CZPT and mature after-sales service -Convenience of machine operation guaranteed · Multiple auto-running functions available, such as Auto counting, Hole Punching/ Length Measuring / Sealing Speed Setting, making it possible for multiple machines controlled by just 1 man – Labour Cost Minimized · Mature Warning and Auto Stop System avoid loss caused by Temperature Lossing, Abnormal Unwinding and Feeding, Photoelectric Sensor and Servo Motor Going Down, etc. to Minimize Material Waste – Production costs Minimized FAQ Q:Are you factory or trading company? A:We are an original FACTORY specializing in designing, manufacturing, and customizing pouch bag making machines for over 20 years, we sincerely and warmly welcome all kinds of clients including the end customers, dealers, and sole agencies discuss with us about all forms of cooperation. Q:Where is your factory located? A:We are located in HangZhou City, 2 hours from ZheJiang by train or car, and 3 hours from HangZhou by air. Q: What kind of pouch bags can your machine make? A:The regular machine types we are selling can produce varieties of laminated pouches/bags,  including but not limited to the following bag types: 2-Side seal pouch bag, 3-Side seal pouch bag, 4-Side seal pouch bag; Lap seal pouch bag, Fin seal pouch bag; Side gusset pouch bag, Bottom gusset pouch bag; Center seal pouch bag, Side seal pouch bag, Bottom seal pouch bag; Flat bottom pouch bag / Plough bottom pouch bag; K Seal pouch bag / Skirt seal pouch bag; Round bottom pouch bag / Doyen bag / Doypack; Corner bottom pouch bag / Plow bottom pouch bag/ Folded bottom pouch bag. We will be very glad to discuss with our clients if they have any special demand for packing solutions, providing them with varieties of customization. Q: What kinds of pouch bag material are available for your machine? A: Our machines can produce laminated pouch bags made with varieties of material, including Aluminum and Plastic like PET, BOPET, OPP, BOPP, LDPE, HDPE, PA, and so on, any special demands of material will be welcome to be discussed with us, we will be glad to help our customers to get the right packing solutions. Q:What’s your after-sale service policy? A:6 months warranty for electronic components + 12 months warranty for mechanical parts. On-site installation and adjustment or remote guidance via the internet Employee technical training Repair and Technical Support Q: What certification do you have? A: With the cooperation of a responsible production management team and an experienced technical team, we have obtained ISO9001 certification from UKAS and CE certification from SGS, and have independently developed more than 30 patents in the past 20 years.

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are 3 main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join 2 heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new 1 or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China OEM Fully Automatic Multi-Function Laminated Film Aluminium Plastic K Seal / Skirt Seal Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt   with high qualityChina OEM Fully Automatic Multi-Function Laminated Film Aluminium Plastic K Seal / Skirt Seal Pouch Bag Making Machine with Servo-Drive System for Fertilizer T-Shirt   with high quality

China Good quality Online Shopging 6 Color Plastic Bag Flexo Printing Machine Price with Free Design Custom

Product Description

Product Description

6 Color High Speed Plastic Bag Flexo Printing Machine   

 

Product Parameters

Specification 

Model of Machine YT-6600 YT-6800 YT-61000 YT-61200 YT-61500
Suitable Material PE:15-150um,  Paper :15-300g/m ²,Nonwoven:15-120g,
OPP/BOPP/CPP:10-100um,PVC/NY:10-120um
Max.Width of Material 600mm 800mm 1000mm 1200mm 1500mm
Max.effect Printing Width 560mm 760mm 960mm 1160mm 1460mm
Printing Length 220-1000mm
 
Color 6 color  ,  6+0    ,5+1  ,4+2  ,3+3
Max.Diameter of Roll Material Φ600mm Φ600mm Φ600mm Φ600mm Φ600mm
Machine speed 100m/min
Printing Speed 70 m/min
80m/min(with Bigger dryer oven on the top(Circulating air))
Accuracy of Registration ±0.25mm
 
Thickness of plate(Including Two-sides Glue Paper) 2.38mm(let me know if the thickness is different)
 
Total Power 11.5kw 15kw 18.5kw 22kw 25kw
Weight of Machine 3500kg 4200kg 5000kg 5500kg 6000kg
Overall Dimensions(mm) 5500×1660×2950 5500×1860×2950 5500×2060×2950 5500×2260×2950 5500×2460×2950

 

Printed Sample

 

Detailed Photos

 

Other product recommendation

 

 

workshop picture

Group picture with customer

 

Customer Feedback

Packaging & Shipping

 

FAQ
1.:Are you factory or trading company ?

We are factory specialized in plastic machine  for many years  ,all of our engineer with more than 20 years experience .

2. Where is your factory? How can i visit your company?
Our factory is located in HangZhou city,zHangZhoug province, China.
Its about 40 minutes from ZheJiang by plane(4 hours by train).we will pick you up on airport or station .welcome to visit our factory

3 How long is your delivery time?
 On normal our delivery time is 30-45 days .if you need it ugently ,we can make your machine first.about 10 days

4.:What’s your warranty policy?
18 month guarantee and whole life maintance ,
 
5:What package do you use for the product?
Be Coated with anti-corrosion oil, and covered with plastic film,  wooden box package need extra cost .
 
6:Does your factory provide installation service?
Our engineer can go to customer factory to installation . buyer should prepare materials used to testing the machine in advance and should be responsible for the cost of supplier’s technician, including round air tickets, visa cost, accommodation and salary 100USD/Day per person since the day start out until the day arriving at factory.

7:What are your terms of payment?
We accept T/T, L/C. western union.

8. How could we do if the parts broken within warranty?
A: We would express the free replacement parts during the warranty date.

9: Does your engineer understand English?
A: Our engineer understand a little English. All our engineer have more than 5 years machine installation experience. In addition, they can use body language to communicate with customer.
 

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China Good quality Online Shopging 6 Color Plastic Bag Flexo Printing Machine Price   with Free Design CustomChina Good quality Online Shopging 6 Color Plastic Bag Flexo Printing Machine Price   with Free Design Custom

China high quality Automatic Plastic Bottle Drink Water Juice Beverage Liquid Filling Sealing Packaging Machine near me shop

Product Description

KIS-1800 Automatic Plastic Bottle Drink Water Juice Beverage Liquid Filling Sealing Packaging Machine

Product Description

Application:
KIS-1800 series are applicable to fill and seal cans, bottles, jars, canisters, bucket, and so on, used to fill with liquid, cream or solid material, such as milk, juice, chocolate, seasoning, disinfectant and so on. It can be customized for packing potato chips, cosmetic cream, wet wipes, bleach, etc..
Features:
1. It adopts stainless steel as frame, aluminum or plastic rotary board.
2. The food contact parts adopt 304 or 316 stainless steel material with food hygiene requirements.
3. It adopts pneumatic drive and PLC control. It can automatically drop cup, fill, pull roll film, cut roll film and wasted film recycling heat sealing.
Main Function:
Automatic bottle/jar/can feed in
Automatic filling liquid/cream/powder/granule
Automatic roll film heat sealing & cutting
Wasted film rewinding
Automatic bottle/jar/can feed out
Technology training:
We can arrange professional technician to install and adjust the machine if customers require, as well as train the operator to operate, adjust and maintain the machine.
Optional Configuration:
1. Conveyor
2. CIP tank
3. mix tank
4. double jacket tank
5. Photocell
6. date printing
7. Plexiglass cover
Technical data:

Model KIS-1800
Production capacity 1600-2000 bottles/h, can be customized
Filling range 50~300ml (can be customized)
Filling accuracy <±1.5%
Power 3N 380V/ single phase 220V, 50/60Hz
Power 1.5Kw
Air consumption 0.8 mз/min
Dimension 1700mm×1300mm×1750mm
Weight 300Kg

Detailed Photos

 

 

Company Profile

 



Main Categories

 

 

Packaging & Shipping

Packaging Shipping
First Rust inhibitor; First contact you the machine is ok.
Second Wrap film; Second put the freight come and take the machine.
Third Plywood; Receiving.
Last in container. Accept!

Why Choose Us

 

1.our machine can be customized ,we can according to your requirement to make machine (you can give any box/cup size you want ,we all can do it ).
2. we are a factory direct sale
3.Give you best service ,we all meet your demand .
Our services
1. Best Service: Product manager Roy for your service.Always FREE.
2. 12H Skypee( chunlaipack1 ) on line.
3. Welcome visit factory.
4. After sale service.
5. Mail be reply in 12 Hours.(except not working days )
6. Photos ing in trade line.

FAQ

Q: First time import, how can I believe that you would send product ?
A: We are verified company by Alibaba ,to make transaction success, we support and recommend LC or with visit our factory.
Q: How to ensure that I received the machine undamaged?
A: First , we package is standard for shipping,then send you the photo when give the product to the freight forwarder. before pick up , please confirm product undamage, if damage, The ship company will take the responsibility.
Q: What aftersales service or any question about products?
A: This machine enjoys 1 years warranty , any problem , I am on line from 9 am to 12 pm, or you can send me mail , will reply you within 12 hours , or call me directly , I’ll give you detail instruction.

 

 

 

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China high quality Automatic Plastic Bottle Drink Water Juice Beverage Liquid Filling Sealing Packaging Machine   near me shop China high quality Automatic Plastic Bottle Drink Water Juice Beverage Liquid Filling Sealing Packaging Machine   near me shop

China supplier Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine near me manufacturer

Product Description

Horizontal Automatic Energy Saving Servo Drive PET Plastic Preform Making Injection Blow Moulding Machine

Our automatic plastic perform injection molding machine adopts a thermal flow system and high-pressure injection molding to get high precision of bottle mouth, bottleneck and screw. It can inject all kinds of plastic parts such as bottle preform, engineering plastic, UPVC, PVC, PE pipes fitting, pomponents for automotive, household, eletronics,  telecommunication, etc.

Advantages of Our Plastic Preform Injection Molding Machine

1. Even the mainframe has no height limit for the workshop to be placed due to its low fuselage.

2. The product can be automatically dropped occasions, do not need to use a manipulator can also achieve automatic molding.

3. Because of the low fuselage, it is convenient for feeding and maintenance.

4. The mold shall be installed by crane.

5. The molding products are easy to be collected and packed by the conveyor belt when multiple sets are arranged in parallel.
Details of Our Plastic Preform Injection Molding Machine

Technical Parameters

Item PM-1300A PM-1600A PM-2000A
screw diameter (mm) 35 40 45 45 50 55 50 55 60
screw l/d ratio (l/d) 24 21 18.7 23.3 21 19.1 23.1 21 19
theoretical shot volume (mm³) 173 226 286 358 442 534 491 594 707
shot weight (ps) (g) 158 206 260 326 402 486 447 540 643
injection pressure (mpa) 235 142 142 219 178 147 215 178 149
theoretical injection rate (ps) (g/s) 110 181 181 142 175 212 145 175 208
plasticising capacity (g/s) 13.8 19.7 27.1 20.1 26.5 34.2 22.5 28.7 35.4
max screw rotate speed (r/min) 250 200 170
injection stroke (mm) 180 225 250
Max.Clamping force(kn) 1300 1600 2000
Max.Opening stroke (mm) 400 460 500
space between (mm) 420*420 480*480 505*505
mould height (mm) 160-440 180-500 190-530
Max.Daylight (mm) 840 960 1030
pump motor power (kw) 13 15 18.5
heating power (kw) 9.2 13.6 16.6
heating zone 4 4 4
net weight 4.3 5.6 6.4
oil tank capacity (t) 360 420 420
intenational designation (l) 1300-410 1600-785 2000-1060

Our Service
Customized service
We can design the machines according your requirements(material,power,filling type,the kinds of the bottles,and so on),at the same time we will give you our professional suggestion,as you know,we have been in this industry for many years.

After-sales service
1.We will delivery the machine and provide the bill of load on time to make sure you can get the machine quickly 
2.When you finish the Preparation conditions,our fast and professional aftersales service engineer team will go to your factory to install the machine,give you the operating manual,and train your employee until they can operate the machine well. 
3.We often ask feedback and offer help to our customer whose machine have been used in their factory for some time.
4.We provide 1 year warranty 
5.Well-trained & experienced staff are to answer all your inquiries in English and Chinese
6.24 hours for engineer response (all services part 5days in customer hand by Intl’ courier). 
7.12 Months guarantee and life-long technical support.
8.Your business relationship with us will be confidential to any third party. 
9.Good after-sale service offered, please get back to us if you got any questions.

Quality Control
We have separate quality control department, which make sure the raw materials are qualified,also ensure the machine running smoothly. 
If you want to know more information about the product,Send inquiry to us, we will solve any of your problems and send you running video for reference.

Packaging & Shipping

Company Information
HangZhou Proman Machine Co., Ltd. is a production manufacturer and exporter in China, specialized in water treatment plants,beverage filling machine, packing machine, bottle blowing machine, injection moulding machine and spare parts of filling line.

Our factory was established in the year of 1998, with the long history of accumulated experience in filling machine industry in south ZheJiang . There are many development engineers of filling machine in our company. We devote ourselves to the development, research and production of liquid food and beverage packing and filling industry.

Besides, we have our own designs for the bottles.

Proman Machine cooperated with many customers in recent years, we win the trust of customers from our high-quality products. And we are looking forward to the future cooperation with you if our products can impress you deeply!

FAQ

1. Where is your factory? 
Our Factory is located in HangZhou City, 2 hours drive from ZheJiang and 1 hour drive from HangZhou(airplane & high-speed rail). If you arrive at ZheJiang or HangZhou, we can pick you up to visit our factory.

2. Do you have any technical supports with your Plastic Preform Injection Molding Machines? 
Yes, We have a professional team of engineers who owned many installation, debug and training experiences abroad, are available to service machinery overseas. 

3. What’s your guarantee or the warranty of the quality if we buy your machines? 
We offer high quality machines with 1 year warranty and supply life-long technical support. 
You’re always welcome to visit our company. If you have any interest on our products. Please do not hesitate to contact us.

An Overview of Worm Shafts and Gears

This article provides an overview of worm shafts and gears, including the type of toothing and deflection they experience. Other topics covered include the use of aluminum versus bronze worm shafts, calculating worm shaft deflection and lubrication. A thorough understanding of these issues will help you to design better gearboxes and other worm gear mechanisms. For further information, please visit the related websites. We also hope that you will find this article informative.
worm shaft

Double throat worm gears

The pitch diameter of a worm and the pitch of its worm wheel must be equal. The 2 types of worm gears have the same pitch diameter, but the difference lies in their axial and circular pitches. The pitch diameter is the distance between the worm’s teeth along its axis and the pitch diameter of the larger gear. Worms are made with left-handed or right-handed threads. The lead of the worm is the distance a point on the thread travels during 1 revolution of the worm gear. The backlash measurement should be made in a few different places on the gear wheel, as a large amount of backlash implies tooth spacing.
A double-throat worm gear is designed for high-load applications. It provides the tightest connection between worm and gear. It is crucial to mount a worm gear assembly correctly. The keyway design requires several points of contact, which block shaft rotation and help transfer torque to the gear. After determining the location of the keyway, a hole is drilled into the hub, which is then screwed into the gear.
The dual-threaded design of worm gears allows them to withstand heavy loads without slipping or tearing out of the worm. A double-throat worm gear provides the tightest connection between worm and gear, and is therefore ideal for hoisting applications. The self-locking nature of the worm gear is another advantage. If the worm gears are designed well, they are excellent for reducing speeds, as they are self-locking.
When choosing a worm, the number of threads that a worm has is critical. Thread starts determine the reduction ratio of a pair, so the higher the threads, the greater the ratio. The same is true for the worm helix angles, which can be one, two, or 3 threads long. This varies between a single thread and a double-throat worm gear, and it is crucial to consider the helix angle when selecting a worm.
Double-throat worm gears differ in their profile from the actual gear. Double-throat worm gears are especially useful in applications where noise is an issue. In addition to their low noise, worm gears can absorb shock loads. A double-throat worm gear is also a popular choice for many different types of applications. These gears are also commonly used for hoisting equipment. Its tooth profile is different from that of the actual gear.
worm shaft

Bronze or aluminum worm shafts

When selecting a worm, a few things should be kept in mind. The material of the shaft should be either bronze or aluminum. The worm itself is the primary component, but there are also addendum gears that are available. The total number of teeth on both the worm and the addendum gear should be greater than 40. The axial pitch of the worm needs to match the circular pitch of the larger gear.
The most common material used for worm gears is bronze because of its desirable mechanical properties. Bronze is a broad term referring to various copper alloys, including copper-nickel and copper-aluminum. Bronze is most commonly created by alloying copper with tin and aluminum. In some cases, this combination creates brass, which is a similar metal to bronze. The latter is less expensive and suitable for light loads.
There are many benefits to bronze worm gears. They are strong and durable, and they offer excellent wear-resistance. In contrast to steel worms, bronze worm gears are quieter than their counterparts. They also require no lubrication and are corrosion-resistant. Bronze worms are popular with small, light-weight machines, as they are easy to maintain. You can read more about worm gears in CZPT’s CZPT.
Although bronze or aluminum worm shafts are the most common, both materials are equally suitable for a variety of applications. A bronze shaft is often called bronze but may actually be brass. Historically, worm gears were made of SAE 65 gear bronze. However, newer materials have been introduced. SAE 65 gear bronze (UNS C90700) remains the preferred material. For high-volume applications, the material savings can be considerable.
Both types of worms are essentially the same in size and shape, but the lead on the left and right tooth surfaces can vary. This allows for precise adjustment of the backlash on a worm without changing the center distance between the worm gear. The different sizes of worms also make them easier to manufacture and maintain. But if you want an especially small worm for an industrial application, you should consider bronze or aluminum.

Calculation of worm shaft deflection

The centre-line distance of a worm gear and the number of worm teeth play a crucial role in the deflection of the rotor. These parameters should be entered into the tool in the same units as the main calculation. The selected variant is then transferred to the main calculation. The deflection of the worm gear can be calculated from the angle at which the worm teeth shrink. The following calculation is helpful for designing a worm gear.
Worm gears are widely used in industrial applications due to their high transmittable torques and large gear ratios. Their hard/soft material combination makes them ideally suited for a wide range of applications. The worm shaft is typically made of case-hardened steel, and the worm wheel is fabricated from a copper-tin-bronze alloy. In most cases, the wheel is the area of contact with the gear. Worm gears also have a low deflection, as high shaft deflection can affect the transmission accuracy and increase wear.
Another method for determining worm shaft deflection is to use the tooth-dependent bending stiffness of a worm gear’s toothing. By calculating the stiffness of the individual sections of a worm shaft, the stiffness of the entire worm can be determined. The approximate tooth area is shown in figure 5.
Another way to calculate worm shaft deflection is by using the FEM method. The simulation tool uses an analytical model of the worm gear shaft to determine the deflection of the worm. It is based on a two-dimensional model, which is more suitable for simulation. Then, you need to input the worm gear’s pitch angle and the toothing to calculate the maximum deflection.
worm shaft

Lubrication of worm shafts

In order to protect the gears, worm drives require lubricants that offer excellent anti-wear protection, high oxidation resistance, and low friction. While mineral oil lubricants are widely used, synthetic base oils have better performance characteristics and lower operating temperatures. The Arrhenius Rate Rule states that chemical reactions double every 10 degrees C. Synthetic lubricants are the best choice for these applications.
Synthetics and compounded mineral oils are the most popular lubricants for worm gears. These oils are formulated with mineral basestock and 4 to 6 percent synthetic fatty acid. Surface-active additives give compounded gear oils outstanding lubricity and prevent sliding wear. These oils are suited for high-speed applications, including worm gears. However, synthetic oil has the disadvantage of being incompatible with polycarbonate and some paints.
Synthetic lubricants are expensive, but they can increase worm gear efficiency and operating life. Synthetic lubricants typically fall into 2 categories: PAO synthetic oils and EP synthetic oils. The latter has a higher viscosity index and can be used at a range of temperatures. Synthetic lubricants often contain anti-wear additives and EP (anti-wear).
Worm gears are frequently mounted over or under the gearbox. The proper lubrication is essential to ensure the correct mounting and operation. Oftentimes, inadequate lubrication can cause the unit to fail sooner than expected. Because of this, a technician may not make a connection between the lack of lube and the failure of the unit. It is important to follow the manufacturer’s recommendations and use high-quality lubricant for your gearbox.
Worm drives reduce backlash by minimizing the play between gear teeth. Backlash can cause damage if unbalanced forces are introduced. Worm drives are lightweight and durable because they have minimal moving parts. In addition, worm drives are low-noise and vibration. In addition, their sliding motion scrapes away excess lubricant. The constant sliding action generates a high amount of heat, which is why superior lubrication is critical.
Oils with a high film strength and excellent adhesion are ideal for lubrication of worm gears. Some of these oils contain sulfur, which can etch a bronze gear. In order to avoid this, it is imperative to use a lubricant that has high film strength and prevents asperities from welding. The ideal lubricant for worm gears is 1 that provides excellent film strength and does not contain sulfur.

China supplier Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   near me manufacturer China supplier Horizontal Automatic Energy Saving Servo Drive Pet Plastic Preform Making Injection Blow Moulding Machine   near me manufacturer